Partial Differential Equations/Numerical Analysis
On a nonlocal moving frame approximation of traveling waves
[Approximation dʼondes progressives dans un référentiel non-local en mouvement]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 753-758.

Dans cette Note nous considérons le développement de méthodes permettant de préciser aussi bien les profils que la vitesse des ondes progressives pour des équations de réaction–diffusion, modélisées par des équations paraboliques semi-linéaires à une dimension dʼespace. Moyennant un changement de variable non-local, les profils deviennent des solutions stationnaires dʼun problème dʼévolution non-local. Nous démontrons que, dans cette nouvelle formulation, aussi bien les profils que les vitesses de propagation des ondes progressives deviennent des états stationnaires asymptotiques stables lorsque le temps tend vers lʼinfini. On analyse aussi la restriction de ce nouveau problème non-local de Cauchy en espace, à un intervalle dʼespace fini. Lorsque lʼintervalle dʼespace tronqué est assez grand on montre quʼil existe un état stationnaire unique et que si lʼintervalle tend vers la droite réelle toute entière, lʼétat stationnaire converge vers le profil de lʼonde progressive. Ceci permet de développer des méthodes numériques efficaces pour le calcul des profils et vitesses de ces ondes progressives nonlinéaires.

The profiles of traveling wave solutions of a 1-d reaction–diffusion parabolic equation are transformed into equilibria of a nonlocal equation, by means of an appropriate nonlocal change of variables. In this new formulation both the profile and the propagation speed of the traveling waves emerge as asymptotic limits of solutions of a nonlocal reaction–diffusion problem when time goes to infinity. In this Note we make these results rigorous analyzing the well-posedness and the stability properties of the corresponding nonlocal Cauchy problem. We also analyze its restriction to a finite interval with consistent boundary conditions. For large enough intervals we show that there is an asymptotically stable equilibrium which approximates the profile of the traveling wave in R. This leads to efficient numerical algorithms for computing the traveling wave profile and speed of propagation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.07.001
Arrieta, Jose M. 1 ; López-Fernández, Maria 2 ; Zuazua, Enrique 3, 4

1 Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
2 Institut für Mathematik, Universität Zürich, Winterthurerst, 190, CH-8057 Zurich, Switzerland
3 Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao, Basque Country, Spain
4 BCAM – Basque Center for Applied Mathematics, Bizkaia Technology Park 500, 48160, Derio, Basque Country, Spain
@article{CRMATH_2011__349_13-14_753_0,
     author = {Arrieta, Jose M. and L\'opez-Fern\'andez, Maria and Zuazua, Enrique},
     title = {On a nonlocal moving frame approximation of traveling waves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {753--758},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.07.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.07.001/}
}
TY  - JOUR
AU  - Arrieta, Jose M.
AU  - López-Fernández, Maria
AU  - Zuazua, Enrique
TI  - On a nonlocal moving frame approximation of traveling waves
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 753
EP  - 758
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.07.001/
DO  - 10.1016/j.crma.2011.07.001
LA  - en
ID  - CRMATH_2011__349_13-14_753_0
ER  - 
%0 Journal Article
%A Arrieta, Jose M.
%A López-Fernández, Maria
%A Zuazua, Enrique
%T On a nonlocal moving frame approximation of traveling waves
%J Comptes Rendus. Mathématique
%D 2011
%P 753-758
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.07.001/
%R 10.1016/j.crma.2011.07.001
%G en
%F CRMATH_2011__349_13-14_753_0
Arrieta, Jose M.; López-Fernández, Maria; Zuazua, Enrique. On a nonlocal moving frame approximation of traveling waves. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 753-758. doi : 10.1016/j.crma.2011.07.001. http://www.numdam.org/articles/10.1016/j.crma.2011.07.001/

[1] J.M. Arrieta, M. López-Fernández, E. Zuazua, Approximating traveling waves by equilibria of nonlocal equations, Preprint, 2011.

[2] Beyn, W.J.; Rottman-Matthes, J. Resolvent estimates for boundary value problems on large intervals via the theory of discrete approximations, Numer. Funct. Anal. Optim., Volume 28 (2007), pp. 603-629

[3] Beyn, W.J.; Thümmler, V. Freezing solutions of equivariant evolution equations, SIAM J. Appl. Dyn. Syst., Volume 3 (2004), pp. 85-116

[4] Beyn, W.J.; Thümmler, V. Phase conditions, symmetries, and PDE continuation, Numerical continuation methods for dynamical systems, Underst. Complex Syst., Springer, Dordrecht, 2007, pp. 301-330

[5] Davidson, F.A.; Dodds, N. Spectral properties of non-local uniformly-elliptic operators, Electron. J. Differential Equations, Volume 126 (2006), p. 15

[6] Dodds, N. Further spectral properties of uniformly elliptic operators that include a non-local term, Appl. Math. Comput., Volume 197 (2008), pp. 317-327

[7] Fife, P.C.; McLeod, J.B. The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rational Mech. Anal., Volume 65 (1977), pp. 335-361

[8] Freitas, P. Non-local reaction diffusion equations, Fields Institute Communications, Volume 21 (1999), pp. 187-204

[9] Henry, D. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer, Berlin, 1981

[10] Kapitula, T.; Kutz, N.; Sandstede, B. The Evans function for nonlocal equations, Indiana Univ. Math. J., Volume 53 (2004) no. 4, pp. 1095-1126

[11] Vainikko, G. Funktionalanalysis der Diskretisierungsmethoden, Leipzig, 1976

Cité par Sources :