Partial Differential Equations/Functional Analysis
A Hardy type inequality for W02,1(Ω) functions
[Une inégalité de type Hardy pour les fonctions de W02,1(Ω)]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 765-767.

Nous considérons des fonctions uW02,1(Ω), où ΩRN est un domaine régulier borné. Nous prouvons que u(x)d(x)W01,1(Ω) avec

(u(x)d(x))L1(Ω)CuW2,1(Ω),
d est une fonction régulière positive qui coïncide avec dist(x,Ω) près de ∂Ω et C est une constante ne dépendant que de d et Ω.

We consider functions uW02,1(Ω), where ΩRN is a smooth bounded domain. We prove that u(x)d(x)W01,1(Ω) with

(u(x)d(x))L1(Ω)CuW2,1(Ω),
where d is a smooth positive function which coincides with dist(x,Ω) near ∂Ω and C is a constant depending only on d and Ω.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.026
Castro, Hernán 1 ; Dávila, Juan 2 ; Wang, Hui 1, 3

1 Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
2 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
3 Department of Mathematics, Technion, Israel Institute of Technology, 32000 Haifa, Israel
@article{CRMATH_2011__349_13-14_765_0,
     author = {Castro, Hern\'an and D\'avila, Juan and Wang, Hui},
     title = {A {Hardy} type inequality for $ {W}_{0}^{2,1}(\Omega )$ functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {765--767},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.026/}
}
TY  - JOUR
AU  - Castro, Hernán
AU  - Dávila, Juan
AU  - Wang, Hui
TI  - A Hardy type inequality for $ {W}_{0}^{2,1}(\Omega )$ functions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 765
EP  - 767
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.026/
DO  - 10.1016/j.crma.2011.06.026
LA  - en
ID  - CRMATH_2011__349_13-14_765_0
ER  - 
%0 Journal Article
%A Castro, Hernán
%A Dávila, Juan
%A Wang, Hui
%T A Hardy type inequality for $ {W}_{0}^{2,1}(\Omega )$ functions
%J Comptes Rendus. Mathématique
%D 2011
%P 765-767
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.026/
%R 10.1016/j.crma.2011.06.026
%G en
%F CRMATH_2011__349_13-14_765_0
Castro, Hernán; Dávila, Juan; Wang, Hui. A Hardy type inequality for $ {W}_{0}^{2,1}(\Omega )$ functions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 765-767. doi : 10.1016/j.crma.2011.06.026. http://www.numdam.org/articles/10.1016/j.crma.2011.06.026/

[1] Adams, Robert A.; Fournier, John J.F. Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003 MR 2424078 (2009e:46025)

[2] Brezis, Haim Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 (MR 2759829)

[3] Brezis, Haim; Marcus, Moshe Hardyʼs inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 25 (1997) no. 1–2, pp. 217-237 (1998), Dedicated to Ennio De Giorgi. MR 1655516 (99m:46075)

[4] Castro, Hernán; Wang, Hui A Hardy type inequality for Wm,1(0,1) functions, Calc. Var. Partial Differential Equations, Volume 39 (2010) no. 3–4, pp. 525-531 (MR 2729310)

[5] Hernán Castro, Juan Dávila, Hui Wang, A Hardy type inequality for W0m,1(Ω) functions, in press.

[6] Gilbarg, David; Trudinger, Neil S. Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 Reprint of the 1998 edition. MR MR1814364 (2001k:35004)

[7] Marcus, Moshe; Veron, Laurent Removable singularities and boundary traces, J. Math. Pures Appl. (9), Volume 80 (2001) no. 9, pp. 879-900 MR 1865379 (2002j:35124)

Cité par Sources :