Analytic Geometry
A Note on small deformations of balanced manifolds
[Une Note sur les petites déformations des variétés équilibrées]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 793-796.

Dans cette Note nous montrons que, sous une condition plus faible que le lemme du ¯, lʼexistence de métriques équilibrées est préservée par des petites déformations. Cette condition affaiblie est satisfaite par lʼespace des twisteurs sur une variété différentielle de dimension 4, compacte et auto-duale.

In this Note we prove that, under a weaker condition than the ¯-lemma, the existence of balanced metrics is preserved under small deformations. This weaker condition is satisfied on the twistor space over a compact self-dual four manifold.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.023
Fu, Jixiang 1 ; Yau, Shing-Tung 2

1 Institute of Mathematics, Fudan University, Shanghai 200433, China
2 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{CRMATH_2011__349_13-14_793_0,
     author = {Fu, Jixiang and Yau, Shing-Tung},
     title = {A {Note} on small deformations of balanced manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {793--796},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.023/}
}
TY  - JOUR
AU  - Fu, Jixiang
AU  - Yau, Shing-Tung
TI  - A Note on small deformations of balanced manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 793
EP  - 796
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.023/
DO  - 10.1016/j.crma.2011.06.023
LA  - en
ID  - CRMATH_2011__349_13-14_793_0
ER  - 
%0 Journal Article
%A Fu, Jixiang
%A Yau, Shing-Tung
%T A Note on small deformations of balanced manifolds
%J Comptes Rendus. Mathématique
%D 2011
%P 793-796
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.023/
%R 10.1016/j.crma.2011.06.023
%G en
%F CRMATH_2011__349_13-14_793_0
Fu, Jixiang; Yau, Shing-Tung. A Note on small deformations of balanced manifolds. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 793-796. doi : 10.1016/j.crma.2011.06.023. http://www.numdam.org/articles/10.1016/j.crma.2011.06.023/

[1] Alessandrini, L.; Bassanelli, G. Small deformations of a class of compact non-Kähler manifolds, Proc. Amer. Math. Soc., Volume 109 (1990), pp. 1059-1062

[2] Alessandrini, L.; Bassanelli, G. Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Diff. Geom., Volume 37 (1993), pp. 95-121

[3] Alessandrini, L.; Bassanelli, G. Modifications of compact balanced manifolds, C. R. Acad. Sci. Paris, Sér. I, Volume 320 (1995), pp. 1517-1522

[4] Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D. Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975), pp. 245-274

[5] Eastwood, M.; Singer, M. The Frölicher spectral sequence on a twistor space, J. Diff. Geom., Volume 38 (1993), pp. 653-669

[6] Fu, J.; Li, J.; Yau, S.-T. Balanced metrics on non-Kähler Calabi–Yau threefolds (A new version of) | arXiv

[7] Gauduchon, P. Structures de Weyl et théorèmes dʼannulation sur une variété conforme autoduale, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 18 (1991), pp. 563-629

[8] Kodaira, K.; Spencer, D.C. On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2), Volume 71 (1960), pp. 43-76

[9] Michelsohn, M.L. On the existence of special metrics in complex geometry, Acta Math., Volume 149 (1982), pp. 261-295

[10] Morrow, J.; Kodaira, K. Complex Manifolds, Holt, Rinehart and Winston, Inc., 1971

[11] Popovici, D. Deformations openness and closedness of various classes of compact complex manifolds; examples | arXiv

[12] C.-C. Wu, On the geometry of superstrings with torsion, thesis, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA, April 2006.

[13] Yau, S.-T. Twistor spaces and balanced metrics on complex manifolds http://www.math.ucla.edu/~greene/YauTwister(8-9).pdf (One topic of a series of lectures at Department of Mathematics, UCLA in Spring 2007. The notes were taken by R. Greene)

Cité par Sources :