Probability Theory/Mathematical Physics
Ghirlanda–Guerra identities and ultrametricity: An elementary proof in the discrete case
[Ultramétricité et identités de Ghirlanda–Guerra : une preuve élémentaire du cas discret]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 813-816.

Dans cette Note nous donnons une nouvelle preuve du fait quʼune matrice aléatoire infinie, qui satisfait lʼidentité Ghirlanda–Guerra et dont les coefficiants prennent leurs valeurs dans un ensemble fini, est ultramétrique avec probabilité un. La preuve utilise uniquement des conséquences algébriques élémentaires des identités Ghirlanda–Guerra et la représentation de Dovbysh–Sudakov.

In this Note we give another proof of the fact that a random overlap array, which satisfies the Ghirlanda–Guerra identities and whose elements take values in a finite set, is ultrametric with probability one. The new proof bypasses random change of density invariance principles for directing measures of such arrays and, in addition to the Dovbysh–Sudakov representation, is based only on elementary algebraic consequences of the Ghirlanda–Guerra identities.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.021
Panchenko, Dmitry 1

1 Department of Mathematics, Texas A&M University, 77843 College Station, TX, USA
@article{CRMATH_2011__349_13-14_813_0,
     author = {Panchenko, Dmitry},
     title = {Ghirlanda{\textendash}Guerra identities and ultrametricity: {An} elementary proof in the discrete case},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {813--816},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.021/}
}
TY  - JOUR
AU  - Panchenko, Dmitry
TI  - Ghirlanda–Guerra identities and ultrametricity: An elementary proof in the discrete case
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 813
EP  - 816
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.021/
DO  - 10.1016/j.crma.2011.06.021
LA  - en
ID  - CRMATH_2011__349_13-14_813_0
ER  - 
%0 Journal Article
%A Panchenko, Dmitry
%T Ghirlanda–Guerra identities and ultrametricity: An elementary proof in the discrete case
%J Comptes Rendus. Mathématique
%D 2011
%P 813-816
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.021/
%R 10.1016/j.crma.2011.06.021
%G en
%F CRMATH_2011__349_13-14_813_0
Panchenko, Dmitry. Ghirlanda–Guerra identities and ultrametricity: An elementary proof in the discrete case. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 813-816. doi : 10.1016/j.crma.2011.06.021. http://www.numdam.org/articles/10.1016/j.crma.2011.06.021/

[1] Aizenman, M.; Contucci, P. On the stability of the quenched state in mean-field spin-glass models, J. Stat. Phys., Volume 92 (1998) no. 5–6, pp. 765-783

[2] Arguin, L.-P.; Aizenman, M. On the structure of quasi-stationary competing particles systems, Ann. Probab., Volume 37 (2009) no. 3, pp. 1080-1113

[3] Dovbysh, L.N.; Sudakov, V.N. Gram–de Finetti matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., Volume 119 (1982), pp. 77-86

[4] Ghirlanda, S.; Guerra, F. General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A, Volume 31 (1998) no. 46, pp. 9149-9155

[5] Panchenko, D. A connection between Ghirlanda–Guerra identities and ultrametricity, Ann. Probab., Volume 38 (2010) no. 1, pp. 327-347

[6] Panchenko, D. On the Dovbysh–Sudakov representation result, Electron. Commun. Probab., Volume 15 (2010), pp. 330-338

[7] Panchenko, D. The Ghirlanda–Guerra identities for mixed p-spin model, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 189-192

[8] Talagrand, M. Spin Glasses: A Challenge for Mathematicians, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 43, Springer-Verlag, 2003

[9] Talagrand, M. Construction of pure states in mean-field models for spin glasses, Probab. Theory Related Fields, Volume 148 (2010) no. 3–4, pp. 601-643

[10] Talagrand, M. Mean-Field Models for Spin Glasses, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vols. 54, 55, Springer-Verlag, 2011

Cité par Sources :