Homological Algebra/Algebraic Geometry
Stratifying derived module categories
[Stratification de catégories dérivées de modules]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1139-1144.

On utilise la notion de recollement pour obtenir une stratification de la catégorie dérivée de la catégorie des modules sur un anneau. Ces stratifications sont des analogues des suites de composition pour les groupes et les modules. Nous sommes ainsi amenés à chercher un analogue « dérivé » du théorème de Jordan Hölder : les stratifications sont-elles uniques à lʼordre des facteurs et aux équivalences près ? Cʼest effectivement le cas pour plusieurs classes dʼanneaux, y compris les anneaux semi-simples, les anneaux commutatifs noethériens, les algèbres de groupes de groupes finis et les algèbres de dimension finie qui sont héréditaires par morceaux.

The concept of recollement is used to obtain a stratification of the derived module category of a ring which may be regarded as an analogue of a composition series for groups or modules. This analogy raises the problem whether a ‘derived’ Jordan Hölder theorem holds true; that is, are such stratifications unique up to ordering and equivalence? This is indeed the case for several classes of rings, including semi-simple rings, commutative Noetherian rings, group algebras of finite groups, and finite dimensional algebras which are piecewise hereditary.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.018
Angeleri Hügel, Lidia 1 ; Koenig, Steffen 2 ; Liu, Qunhua 2 ; Yang, Dong 3

1 Dipartimento di Informatica – Settore Matematica, Università degli Studi di Verona, Strada Le Grazie 15 – Caʼ Vignal 2, 37134 Verona, Italy
2 Institute for Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
3 Hausdorff Research Institute for Mathematics, Poppelsdorfer Allee 82, 53115 Bonn, Germany
@article{CRMATH_2011__349_21-22_1139_0,
     author = {Angeleri H\"ugel, Lidia and Koenig, Steffen and Liu, Qunhua and Yang, Dong},
     title = {Stratifying derived module categories},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1139--1144},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.018/}
}
TY  - JOUR
AU  - Angeleri Hügel, Lidia
AU  - Koenig, Steffen
AU  - Liu, Qunhua
AU  - Yang, Dong
TI  - Stratifying derived module categories
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1139
EP  - 1144
VL  - 349
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.018/
DO  - 10.1016/j.crma.2011.06.018
LA  - en
ID  - CRMATH_2011__349_21-22_1139_0
ER  - 
%0 Journal Article
%A Angeleri Hügel, Lidia
%A Koenig, Steffen
%A Liu, Qunhua
%A Yang, Dong
%T Stratifying derived module categories
%J Comptes Rendus. Mathématique
%D 2011
%P 1139-1144
%V 349
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.018/
%R 10.1016/j.crma.2011.06.018
%G en
%F CRMATH_2011__349_21-22_1139_0
Angeleri Hügel, Lidia; Koenig, Steffen; Liu, Qunhua; Yang, Dong. Stratifying derived module categories. Comptes Rendus. Mathématique, Tome 349 (2011) no. 21-22, pp. 1139-1144. doi : 10.1016/j.crma.2011.06.018. http://www.numdam.org/articles/10.1016/j.crma.2011.06.018/

[1] Angeleri Hügel, L.; Koenig, S.; Liu, Q. Recollements and tilting objects, J. Pure Appl. Alg., Volume 215 (2011), pp. 420-438 (also) | arXiv

[2] L. Angeleri Hügel, S. Koenig, Q. Liu, On the uniqueness of stratifications of derived module categories, preprint, 2009, . | arXiv

[3] L. Angeleri Hügel, S. Koenig, Q. Liu, Jordan Hölder theorems for derived module categories of piecewise hereditary algebras, preprint, 2011.

[4] L. Angeleri Hügel, S. Koenig, Q. Liu, D. Yang, On derived simple algebras, in preparation.

[5] Beilinson, A.A.; Bernstein, J.; Deligne, P. Faisceaux pervers, Astérisque, Volume 100 (1982), pp. 5-171

[6] H.X. Chen, C.C. Xi, Good tilting modules and recollements of derived modules categories, preprint, 2010, . | arXiv

[7] Cline, E.; Parshall, B.; Scott, L. Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math., Volume 391 (1998), pp. 85-99

[8] Cline, E.; Parshall, B.; Scott, L. Stratifying endomorphism algebras, Mem. A.M.S., Volume 124 (1996) no. 591 (119 pp)

[9] Happel, D. A family of algebras with two simple modules and Fibonacci numbers, Arch. Math., Volume 57 (1991), pp. 133-139

[10] Happel, D. Reduction techniques for homological conjectures, Tsukuba J. Math., Volume 17 (1993), pp. 115-130

[11] Happel, D.; Reiten, I. Hereditary abelian categories with tilting object over arbitrary base fields, J. Alg., Volume 256 (2002), pp. 414-432

[12] Keller, B. Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Alg., Volume 123 (1998), pp. 223-273

[13] Keller, B. On the cyclic homology of exact categories, J. Pure Appl. Alg., Volume 136 (1999), pp. 1-56

[14] Koenig, S. Tilting complexes, perpendicular categories and recollements of derived module categories of rings, J. Pure Appl. Alg., Volume 73 (1991), pp. 211-232

[15] Koenig, S.; Nagase, H. Hochschild cohomology and stratifying ideals, J. Pure Appl. Alg., Volume 213 (2009), pp. 886-891

[16] Q. Liu, D. Yang, Blocks of group algebras are derived simple, preprint, 2011, . | arXiv

[17] Nicolás, P.; Saorín, M. Parameterizing recollement data for triangulated categories, J. Alg., Volume 322 (2009), pp. 1220-1250

[18] Wiedemann, A. On stratifications of derived module categories, Canad. Math. Bull., Volume 34 (1991), pp. 275-280

Cité par Sources :