Dans cette Note, on propose un nouveau formalisme pour les représentations multi-échelles non-linéaires et non-séparables. Tout en gardant des similarités avec les résultats théoriques existants, celui-ci permet dʼobtenir des théorèmes de convergence et stabilité sous des hypothèses plus faibles.
In this Note, we present a new formalism for nonlinear and non-separable multiscale representations. The new formalism we propose brings about similarities between existing nonlinear multiscale representations and also allows us to alleviate the classical hypotheses made to prove the convergence of the multiscale representations.
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_741_0, author = {G\'erot, C\'edric and Mate{\"\i}, Basarab and Meignen, Sylvain}, title = {Nonlinear and non-separable multiscale representations based on {Lipschitz} perturbation}, journal = {Comptes Rendus. Math\'ematique}, pages = {741--744}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.015}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.015/} }
TY - JOUR AU - Gérot, Cédric AU - Mateï, Basarab AU - Meignen, Sylvain TI - Nonlinear and non-separable multiscale representations based on Lipschitz perturbation JO - Comptes Rendus. Mathématique PY - 2011 SP - 741 EP - 744 VL - 349 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.06.015/ DO - 10.1016/j.crma.2011.06.015 LA - en ID - CRMATH_2011__349_13-14_741_0 ER -
%0 Journal Article %A Gérot, Cédric %A Mateï, Basarab %A Meignen, Sylvain %T Nonlinear and non-separable multiscale representations based on Lipschitz perturbation %J Comptes Rendus. Mathématique %D 2011 %P 741-744 %V 349 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.06.015/ %R 10.1016/j.crma.2011.06.015 %G en %F CRMATH_2011__349_13-14_741_0
Gérot, Cédric; Mateï, Basarab; Meignen, Sylvain. Nonlinear and non-separable multiscale representations based on Lipschitz perturbation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 741-744. doi : 10.1016/j.crma.2011.06.015. http://www.numdam.org/articles/10.1016/j.crma.2011.06.015/
[1] Analysis of a new non-linear subdivision scheme: Applications to image processing, Found. Comput. Math., Volume 6 (2006), pp. 193-226
[2] Oriented wavelet for image compression and denoising, IEEE Transactions on Image Processing, Volume 15 (2006), pp. 2892-2903
[3] Smoothness characterization and stability in nonlinear multi-scale framework, Theoretical Results Asymptotic Analysis, Volume 46 (2005), pp. 277-309
[4] B. Mateï, S. Meignen, A new formalism for nonlinear and non-separable multiscale representation, submitted for publication.
Cité par Sources :