Mathematical Analysis/Numerical Analysis
Nonlinear and non-separable multiscale representations based on Lipschitz perturbation
[Un nouveau formalisme pour les représentations multi-échelles non-linéaires et non-séparables]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 741-744.

Dans cette Note, on propose un nouveau formalisme pour les représentations multi-échelles non-linéaires et non-séparables. Tout en gardant des similarités avec les résultats théoriques existants, celui-ci permet dʼobtenir des théorèmes de convergence et stabilité sous des hypothèses plus faibles.

In this Note, we present a new formalism for nonlinear and non-separable multiscale representations. The new formalism we propose brings about similarities between existing nonlinear multiscale representations and also allows us to alleviate the classical hypotheses made to prove the convergence of the multiscale representations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.015
Gérot, Cédric 1 ; Mateï, Basarab 2 ; Meignen, Sylvain 3

1 GIPSA Laboratory, University of Grenoble, 961, rue de la Houille Blanche, BP 46, 38402 Grenoble cedex, France
2 LAGA Laboratory, Paris XIII University, 99, avenue Jean-Batiste Clément, 93430 Villetaneuse, France
3 LJK Laboratory, University of Grenoble, 51, rue des mathématiques, campus de Saint Martin dʼHères, BP 53, 38041 Grenoble cedex 09, France
@article{CRMATH_2011__349_13-14_741_0,
     author = {G\'erot, C\'edric and Mate{\"\i}, Basarab and Meignen, Sylvain},
     title = {Nonlinear and non-separable multiscale representations based on {Lipschitz} perturbation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {741--744},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.015/}
}
TY  - JOUR
AU  - Gérot, Cédric
AU  - Mateï, Basarab
AU  - Meignen, Sylvain
TI  - Nonlinear and non-separable multiscale representations based on Lipschitz perturbation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 741
EP  - 744
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.015/
DO  - 10.1016/j.crma.2011.06.015
LA  - en
ID  - CRMATH_2011__349_13-14_741_0
ER  - 
%0 Journal Article
%A Gérot, Cédric
%A Mateï, Basarab
%A Meignen, Sylvain
%T Nonlinear and non-separable multiscale representations based on Lipschitz perturbation
%J Comptes Rendus. Mathématique
%D 2011
%P 741-744
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.015/
%R 10.1016/j.crma.2011.06.015
%G en
%F CRMATH_2011__349_13-14_741_0
Gérot, Cédric; Mateï, Basarab; Meignen, Sylvain. Nonlinear and non-separable multiscale representations based on Lipschitz perturbation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 741-744. doi : 10.1016/j.crma.2011.06.015. http://www.numdam.org/articles/10.1016/j.crma.2011.06.015/

[1] Amat, S.; Donat, R.; Liandrat, J.; Trillo, J.C. Analysis of a new non-linear subdivision scheme: Applications to image processing, Found. Comput. Math., Volume 6 (2006), pp. 193-226

[2] Chappelier, V.; Guillemot, C. Oriented wavelet for image compression and denoising, IEEE Transactions on Image Processing, Volume 15 (2006), pp. 2892-2903

[3] Mateï, B. Smoothness characterization and stability in nonlinear multi-scale framework, Theoretical Results Asymptotic Analysis, Volume 46 (2005), pp. 277-309

[4] B. Mateï, S. Meignen, A new formalism for nonlinear and non-separable multiscale representation, submitted for publication.

Cité par Sources :