[Une méthode analytique pour le calcul des courbes bifurcation de Hopf dans les champs neuronaux avec retards dépendant de lʼespace]
Dans ce compte-rendu, on donne une paramètrisation des courbes de valeurs propres imaginaires pures, dans le plan des paramètres décrivant le terme des retards, pour les équation linéarisées des champs neuronaux avec retards dépendant de lʼespace. Afin de savoir si la valeur propre de plus grande partie réelle, est imaginaire pure, on doit calculer un nombre n de ces courbes, n étant borné par une constante que lʼon fournit. La courbe de bifurcation de Hopf est incluse dans le graphe de ces courbes.
We give an analytical parametrization of the curves of purely imaginary eigenvalues in the delay-parameter plane of the linearized neural field network equations with space-dependent delays. In order to determine if the rightmost eigenvalue is purely imaginary, we have to compute a finite number of such curves; the number of curves is bounded by a constant for which we give an expression. The Hopf bifurcation curve lies on these curves.
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_749_0, author = {Veltz, Romain}, title = {An analytical method for computing {Hopf} bifurcation curves in neural field networks with space-dependent delays}, journal = {Comptes Rendus. Math\'ematique}, pages = {749--752}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.014/} }
TY - JOUR AU - Veltz, Romain TI - An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays JO - Comptes Rendus. Mathématique PY - 2011 SP - 749 EP - 752 VL - 349 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.06.014/ DO - 10.1016/j.crma.2011.06.014 LA - en ID - CRMATH_2011__349_13-14_749_0 ER -
%0 Journal Article %A Veltz, Romain %T An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays %J Comptes Rendus. Mathématique %D 2011 %P 749-752 %V 349 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.06.014/ %R 10.1016/j.crma.2011.06.014 %G en %F CRMATH_2011__349_13-14_749_0
Veltz, Romain. An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 749-752. doi : 10.1016/j.crma.2011.06.014. http://www.numdam.org/articles/10.1016/j.crma.2011.06.014/
[1] Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, Volume 27 (June 1977) no. 2, pp. 77-87
[2] Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Philos. Trans. R. Soc. Lond. B, Volume 306 (March 2001) no. 1407, pp. 299-330
[3] Nonlocal Ginzburg–Landau equation for cortical pattern formation, Physical Review E, Volume 78 (2008) no. 4, p. 41916
[4] et al. Neocortical axon arbors trade-off material and conduction delay conservation, PLoS Comput. Biol., Volume 6 (2010) no. 3, p. e1000711
[5] On the Lambert W function, Advances in Computational Mathematics, Volume 5 (1996), pp. 329-359
[6] Introduction to Functional Differential Equations, Springer-Verlag, 1993
[7] Lambert W Function Approach to Stability and Stabilization Problems for Linear Time-Delay Systems, Kyoto Institute of Technology, 2007
[8] Dynamic instabilities in scalar neural field equations with space-dependent delays, Physica D: Nonlinear Phenomena, Volume 232 (2007), pp. 1-15
[9] A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Biological Cybernetics, Volume 13 (September 1973) no. 2, pp. 55-80
Cité par Sources :