Soit , ou , où q est une puissance dʼun nombre premier p, soit U un p-sous-groupe de Sylow de G et soit R un anneau commutatif dans lequel p est inversible. Soit le groupe dérivé de U et soit . Le but de cette Note est de montrer que les R-algèbres RG et sont Morita équivalentes (à travers le foncteur naturel RG-mod → -mod, ).
Let , or , where q is a power of some prime number p, let U denote a Sylow p-subgroup of G and let R be a commutative ring in which p is invertible. Let denote the derived subgroup of U and let . The aim of this Note is to prove that the R-algebras RG and are Morita equivalent (through the natural functor RG-mod → -mod, ).
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_731_0, author = {Bonnaf\'e, C\'edric}, title = {A progenerator for representations of $ {\mathbf{SL}}_{n}({\mathbb{F}}_{q})$ in transverse characteristic}, journal = {Comptes Rendus. Math\'ematique}, pages = {731--733}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.008/} }
TY - JOUR AU - Bonnafé, Cédric TI - A progenerator for representations of $ {\mathbf{SL}}_{n}({\mathbb{F}}_{q})$ in transverse characteristic JO - Comptes Rendus. Mathématique PY - 2011 SP - 731 EP - 733 VL - 349 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.06.008/ DO - 10.1016/j.crma.2011.06.008 LA - en ID - CRMATH_2011__349_13-14_731_0 ER -
%0 Journal Article %A Bonnafé, Cédric %T A progenerator for representations of $ {\mathbf{SL}}_{n}({\mathbb{F}}_{q})$ in transverse characteristic %J Comptes Rendus. Mathématique %D 2011 %P 731-733 %V 349 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.06.008/ %R 10.1016/j.crma.2011.06.008 %G en %F CRMATH_2011__349_13-14_731_0
Bonnafé, Cédric. A progenerator for representations of $ {\mathbf{SL}}_{n}({\mathbb{F}}_{q})$ in transverse characteristic. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 731-733. doi : 10.1016/j.crma.2011.06.008. http://www.numdam.org/articles/10.1016/j.crma.2011.06.008/
[1] Coxeter orbits and modular representations, Nagoya Math. J., Volume 183 (2006), pp. 1-34
[2] On quotients of Hom-functors and representations of finite general linear groups II, J. Algebra, Volume 209 (1998), pp. 199-269
[3] Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, Springer, 1999 (xxiv+557 pp)
Cité par Sources :