Number Theory
Partial quotients and equidistribution
[Fractions continues et equidistribution]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 713-718.

Nous obtenons des bornes en moyenne pour les quotients partiels de certaines fractions b/p, p un nombre premier, b dans un sous-groupe de (Z/pZ) ainsi que pour b un élément primitif « typique » (modp). Ceci donne en particulier une amélioration de résultats de G. Larcher. Il est bien connu que le comportement des quotients partiels de bp détermine les propriétés statistiques de la distribution bj(modp). On en déduit, comme corollaire, de meilleures estimations sur les corrélations partielles pour ces suites.

We establish average bounds on the partial quotients of fractions b/p, with p prime, b taken in a multiplicative subgroup of (Z/pZ) and for “most” primitive elements b. Our result improves upon earlier work due to G. Larcher. The behavior of the partial quotients of b/p is well known to be crucial to the statistical properties of the pseudo-congruential number generator (modp). As a corollary, estimates on their pair correlation are refined.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.007
Chang, Mei-Chu 1

1 Department of Mathematics, University of California, 900 University Avenue, Riverside, CA 92521, USA
@article{CRMATH_2011__349_13-14_713_0,
     author = {Chang, Mei-Chu},
     title = {Partial quotients and equidistribution},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {713--718},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.007/}
}
TY  - JOUR
AU  - Chang, Mei-Chu
TI  - Partial quotients and equidistribution
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 713
EP  - 718
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.007/
DO  - 10.1016/j.crma.2011.06.007
LA  - en
ID  - CRMATH_2011__349_13-14_713_0
ER  - 
%0 Journal Article
%A Chang, Mei-Chu
%T Partial quotients and equidistribution
%J Comptes Rendus. Mathématique
%D 2011
%P 713-718
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.007/
%R 10.1016/j.crma.2011.06.007
%G en
%F CRMATH_2011__349_13-14_713_0
Chang, Mei-Chu. Partial quotients and equidistribution. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 713-718. doi : 10.1016/j.crma.2011.06.007. http://www.numdam.org/articles/10.1016/j.crma.2011.06.007/

[1] Cusick, T.W. Zarembaʼs conjecture and sums of the divisor function, Math. Comput., Volume 61 (1993) no. 203, pp. 171-176

[2] Garaev, M.Z.; Karatsuba, A.A. On character sums and the exceptional set of a congruence problem, J. Number Theory, Volume 114 (2005), pp. 182-192

[3] Kuipers, L.; Niederreiter, H. Uniform Distribution of Sequences, Wiley, New York, 1974

[4] Larcher, G. On the distribution of sequences connected with good lattice points, Monatsh. Math., Volume 101 (1986) no. 2, pp. 135-150

[5] Rockett, A.M.; Szusz, P. Continued Fractions, World Scientific, 1992

[6] Zaremba, S.K. La méthode des « bons treillis » pour le calcul des integrales multiples (Zaremba, S.K., ed.), Applications of Number Theory to Numerical Analysis, Academic Press, New York, 1972, pp. 39-119

[7] Zaremba, S.K. Good lattice points modulo composite numbers, Monatsh. Math., Volume 78 (1974), pp. 446-460

Cité par Sources :