Nous établissons un critère de comparaison de type de Liouville pour des sous- et super-solutions entières de lʼéquation dans le demi-espace , où , et , . Dans notre étude, nous nʼimposons ni des restrictions sur le comportement des sous- ou super-solutions entières sur le hyper-plan , ni des conditions de croissance sur le comportement à lʼinfini de ces solutions ou de leurs dérivées partielles. Nous démontrons que si , et u et v constituent, respectivement, une super-solution faible entière et une sous-solution faible entière de (⁎) dans qui appartiennent, localement en , à lʼespace de Sobolev approprié, et qui sont telles que , alors . Ce résultat est précis. Comme corollaires immédiats, nous obtenons des nouveaux résultats, ainsi que des résultats connus de type Fujita et Liouville.
We establish a Liouville comparison principle for entire sub- and super-solutions of the equation in the half-space , where , and , . In our study we impose neither restrictions on the behaviour of entire sub- and super-solutions on the hyper-plane , nor any growth conditions on their behaviour or on that of any of their partial derivatives at infinity. We prove that if , and u and v are, respectively, an entire weak super-solution and an entire weak sub-solution of (⁎) in which belong, only locally in , to the corresponding Sobolev space and are such that , then . The result is sharp. As direct corollaries we obtain both new and known Fujita-type and Liouville-type results.
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_773_0, author = {Kurta, Vasilii V.}, title = {A {Liouville} comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$}, journal = {Comptes Rendus. Math\'ematique}, pages = {773--776}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.006/} }
TY - JOUR AU - Kurta, Vasilii V. TI - A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$ JO - Comptes Rendus. Mathématique PY - 2011 SP - 773 EP - 776 VL - 349 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.06.006/ DO - 10.1016/j.crma.2011.06.006 LA - en ID - CRMATH_2011__349_13-14_773_0 ER -
%0 Journal Article %A Kurta, Vasilii V. %T A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$ %J Comptes Rendus. Mathématique %D 2011 %P 773-776 %V 349 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.06.006/ %R 10.1016/j.crma.2011.06.006 %G en %F CRMATH_2011__349_13-14_773_0
Kurta, Vasilii V. A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 773-776. doi : 10.1016/j.crma.2011.06.006. http://www.numdam.org/articles/10.1016/j.crma.2011.06.006/
[1] A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., Volume 34 (1998) no. 7, pp. 1005-1027
[2] On the blowing up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 13 (1966), pp. 109-124
[3] On a comparison principle and the critical Fujita exponents for solutions of semilinear parabolic inequalities, J. London Math. Soc. (2), Volume 66 (2002) no. 2, pp. 351-360
[4] A Liouville comparison principle for solutions of semilinear elliptic partial differential inequalities, Proc. Roy. Soc. Edinburgh Sect. A, Volume 138 (2008) no. 1, pp. 139-155
[5] Comparison principle for solutions of parabolic inequalities, C. R. Acad. Sci. Paris, Sér. I, Volume 322 (1996), pp. 1175-1180
Cité par Sources :