Partial Differential Equations
A Liouville comparison principle for entire sub- and super-solutions of the equation utΔp(u)=|u|q1u
[Sur un critère de comparaison de type de Liouville pour des sous- et super-solutions entières de lʼéquation utΔp(u)=|u|q1u]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 773-776.

Nous établissons un critère de comparaison de type de Liouville pour des sous- et super-solutions entières de lʼéquation () wtΔp(w)=|w|q1w dans le demi-espace S=R+1×Rn, où n1, q>0 et Δp(w):=divx(|xw|p2xw), 1<p2. Dans notre étude, nous nʼimposons ni des restrictions sur le comportement des sous- ou super-solutions entières sur le hyper-plan t=0, ni des conditions de croissance sur le comportement à lʼinfini de ces solutions ou de leurs dérivées partielles. Nous démontrons que si 1<qp1+pn, et u et v constituent, respectivement, une super-solution faible entière et une sous-solution faible entière de (⁎) dans S qui appartiennent, localement en S, à lʼespace de Sobolev approprié, et qui sont telles que uv, alors uv. Ce résultat est précis. Comme corollaires immédiats, nous obtenons des nouveaux résultats, ainsi que des résultats connus de type Fujita et Liouville.

We establish a Liouville comparison principle for entire sub- and super-solutions of the equation () wtΔp(w)=|w|q1w in the half-space S=R+1×Rn, where n1, q>0 and Δp(w):=divx(|xw|p2xw), 1<p2. In our study we impose neither restrictions on the behaviour of entire sub- and super-solutions on the hyper-plane t=0, nor any growth conditions on their behaviour or on that of any of their partial derivatives at infinity. We prove that if 1<qp1+pn, and u and v are, respectively, an entire weak super-solution and an entire weak sub-solution of (⁎) in S which belong, only locally in S, to the corresponding Sobolev space and are such that uv, then uv. The result is sharp. As direct corollaries we obtain both new and known Fujita-type and Liouville-type results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.006
Kurta, Vasilii V. 1

1 Mathematical Reviews, 416 Fourth Street, P.O. Box 8604, Ann Arbor, MI 48107-8604, USA
@article{CRMATH_2011__349_13-14_773_0,
     author = {Kurta, Vasilii V.},
     title = {A {Liouville} comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {773--776},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.006/}
}
TY  - JOUR
AU  - Kurta, Vasilii V.
TI  - A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 773
EP  - 776
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.006/
DO  - 10.1016/j.crma.2011.06.006
LA  - en
ID  - CRMATH_2011__349_13-14_773_0
ER  - 
%0 Journal Article
%A Kurta, Vasilii V.
%T A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$
%J Comptes Rendus. Mathématique
%D 2011
%P 773-776
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.006/
%R 10.1016/j.crma.2011.06.006
%G en
%F CRMATH_2011__349_13-14_773_0
Kurta, Vasilii V. A Liouville comparison principle for entire sub- and super-solutions of the equation $ {u}_{t}-{\mathrm{\Delta }}_{p}(u)={|u|}^{q-1}u$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 773-776. doi : 10.1016/j.crma.2011.06.006. http://www.numdam.org/articles/10.1016/j.crma.2011.06.006/

[1] Galaktionov, V.A.; Levine, H.A. A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., Volume 34 (1998) no. 7, pp. 1005-1027

[2] Fujita, H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 13 (1966), pp. 109-124

[3] Kartsatos, A.G.; Kurta, V.V. On a comparison principle and the critical Fujita exponents for solutions of semilinear parabolic inequalities, J. London Math. Soc. (2), Volume 66 (2002) no. 2, pp. 351-360

[4] Kurta, V.V. A Liouville comparison principle for solutions of semilinear elliptic partial differential inequalities, Proc. Roy. Soc. Edinburgh Sect. A, Volume 138 (2008) no. 1, pp. 139-155

[5] Kurta, V.V. Comparison principle for solutions of parabolic inequalities, C. R. Acad. Sci. Paris, Sér. I, Volume 322 (1996), pp. 1175-1180

Cité par Sources :