Partial Differential Equations
Barenblatt profiles for a nonlocal porous medium equation
[Solutions auto-similaires pour une équation des milieux poreux non locale]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 641-645.

Cette Note est consacrée à lʼétude dʼune généralisation non locale de lʼéquation des milieux poreux. Plus précisément, on obtient des formules explicites de solutions auto-similaires à support compact qui ressemblent fortement aux solutions de type Barenblatt. On donne aussi un argument formel qui permet dʼobtenir des estimations Lp des solutions faibles du problème de Cauchy.

We study a generalization of the porous medium equation involving nonlocal terms. More precisely, explicit self-similar solutions with compact support generalizing the Barenblatt solutions are constructed. We also present a formal argument to get the Lp decay of weak solutions of the corresponding Cauchy problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.003
Biler, Piotr 1 ; Imbert, Cyril 2 ; Karch, Grzegorz 1

1 Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
2 Université Paris-Dauphine, CEREMADE (UMR CNRS 7534), place de Lattre de Tassigny, 75775 Paris cedex 16, France
@article{CRMATH_2011__349_11-12_641_0,
     author = {Biler, Piotr and Imbert, Cyril and Karch, Grzegorz},
     title = {Barenblatt profiles for a nonlocal porous medium equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {641--645},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.003/}
}
TY  - JOUR
AU  - Biler, Piotr
AU  - Imbert, Cyril
AU  - Karch, Grzegorz
TI  - Barenblatt profiles for a nonlocal porous medium equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 641
EP  - 645
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.003/
DO  - 10.1016/j.crma.2011.06.003
LA  - en
ID  - CRMATH_2011__349_11-12_641_0
ER  - 
%0 Journal Article
%A Biler, Piotr
%A Imbert, Cyril
%A Karch, Grzegorz
%T Barenblatt profiles for a nonlocal porous medium equation
%J Comptes Rendus. Mathématique
%D 2011
%P 641-645
%V 349
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.003/
%R 10.1016/j.crma.2011.06.003
%G en
%F CRMATH_2011__349_11-12_641_0
Biler, Piotr; Imbert, Cyril; Karch, Grzegorz. Barenblatt profiles for a nonlocal porous medium equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 641-645. doi : 10.1016/j.crma.2011.06.003. http://www.numdam.org/articles/10.1016/j.crma.2011.06.003/

[1] Biler, P.; Karch, G.; Monneau, R. A nonlinear diffusion of dislocation density and self-similar solutions, Comm. Math. Phys., Volume 294 (2010), pp. 145-168

[2] P. Biler, C. Imbert, G. Karch, Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, in preparation, 2011.

[3] L. Caffarelli, J.L. Vázquez, Nonlinear porous medium flow with fractional potential pressure, preprint , Arch. Rational Mech. Anal., , in press. | arXiv | DOI

[4] Caffarelli, L.; Vázquez, J.L. Asymptotic behavior of a porous medium equation with fractional diffusion, Discrete Contin. Dynam. Systems, Volume 29 (2011), pp. 1393-1404

[5] Carrillo, J.A.; Jüngel, A.; Markowich, P.A.; Toscani, G.; Unterreiter, A. Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001), pp. 1-82

[6] Getoor, R.K. First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., Volume 101 (1961), pp. 75-90

[7] C. Imbert, A. Mellet, A higher order non-local equation appearing in crack dynamics, preprint , 2010. | arXiv

[8] Karch, G.; Miao, C.; Xu, X. On the convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal., Volume 39 (2008), pp. 1536-1549

[9] Landkof, N.S. Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972

[10] Liskevich, V.A.; Semenov, Yu.A. Some problems on Markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., vol. 11, Akademie Verlag, Berlin, 1996, pp. 163-217

[11] Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der mathematischen Wissenschaften, vol. 52, Springer-Verlag New York, Inc., New York, 1966

[12] Stein, E.M. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970

[13] Vázquez, J.L. The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2007

[14] Vázquez, J.L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and Its Applications, vol. 33, Oxford University Press, Oxford, 2006

Cité par Sources :