A toute compactification métrisable S du plan complexe, nous associons une extension de lʼ algèbre du disque . Un cas fondamental est celui où . Nous déterminons lʼ ensemble de limites uniformes des polynômes sur le disque unité fermé , par rapport à la métrique chordale ; ensuite nous étendons cette étude au cas géneral.
We investigate the uniform limits of the set of polynomials on the closed unit disc with respect to the chordal metric χ. More generally, we examine analogous questions replacing by other metrizable compactifications of .
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_745_0, author = {Androulidakis, Iakovos and Nestoridis, Vassili}, title = {Extensions of the disc algebra and of {Mergelyan's} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {745--748}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.002/} }
TY - JOUR AU - Androulidakis, Iakovos AU - Nestoridis, Vassili TI - Extensions of the disc algebra and of Mergelyanʼs theorem JO - Comptes Rendus. Mathématique PY - 2011 SP - 745 EP - 748 VL - 349 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.06.002/ DO - 10.1016/j.crma.2011.06.002 LA - en ID - CRMATH_2011__349_13-14_745_0 ER -
%0 Journal Article %A Androulidakis, Iakovos %A Nestoridis, Vassili %T Extensions of the disc algebra and of Mergelyanʼs theorem %J Comptes Rendus. Mathématique %D 2011 %P 745-748 %V 349 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.06.002/ %R 10.1016/j.crma.2011.06.002 %G en %F CRMATH_2011__349_13-14_745_0
Androulidakis, Iakovos; Nestoridis, Vassili. Extensions of the disc algebra and of Mergelyanʼs theorem. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 745-748. doi : 10.1016/j.crma.2011.06.002. http://www.numdam.org/articles/10.1016/j.crma.2011.06.002/
[1] Complex Analysis, An Introduction to the Theory of Analytic Functions of One Complex Variable, McGraw–Hill, New York, 1966
[2] Continuous boundary behaviour for functions defined in the open unit disc, Nagoya Math. J., Volume 57 (1975), pp. 49-58
[3] Topology, Allyn and Bacon Inc., Atlantic Avenue, Boston, 1968
[4] Possibility of uniform rational approximation in Spherical metric, Canad. J. Math., Volume XXVIII (1976) no. 1, pp. 112-115
[5] Differential Topology, Grad. Texts in Math., vol. 33, Springer, 1976
[6] Introduction to Spaces, London Math. Soc. Lecture Note Ser., vol. 40, Cambridge Univ. Press, Cambridge, London, NY, New Rochelle, Melbourne, Sydney, 1980 (pp. 69–82)
[7] An extension of the disc algebra, 2010 | arXiv
[8] V. Nestoridis, An extension of the disc algebra, I, 2010, submitted for publication.
[9] Another extension of the disc algebra, 2010 | arXiv
[10] V. Nestoridis, N. Papadatos, An extension of the disc algebra, II, 2010, submitted for publication.
[11] A remark on two extensions of the disc algebra and Mergelyanʼs theorem | arXiv
[12] Real and Complex Analysis, McGraw–Hill, NY, St. Louis, San Francisco, Toronto, Sydney, 1986
[13] A Comprehensive Introduction to Differential Geometry, vol. 1, Brandeis University, 1970
[14] Generic covering properties for spaces of analytic functions, Pacific J. Math., Volume 119 (1985) no. 6, pp. 227-243
Cité par Sources :