Complex Analysis/Harmonic Analysis
Extensions of the disc algebra and of Mergelyanʼs theorem
[Extensions de lʼalgèbre du disque et du théorème de Mergelyan]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 745-748.

A toute compactification métrisable S du plan complexe, nous associons une extension A(D,S) de lʼ algèbre du disque A(D). Un cas fondamental est celui où S=C{}. Nous déterminons lʼ ensemble de limites uniformes des polynômes sur le disque unité fermé D¯, par rapport à la métrique chordale ; ensuite nous étendons cette étude au cas géneral.

We investigate the uniform limits of the set of polynomials on the closed unit disc D¯ with respect to the chordal metric χ. More generally, we examine analogous questions replacing C{} by other metrizable compactifications of C.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.002
Androulidakis, Iakovos 1 ; Nestoridis, Vassili 2

1 Georg-August Universität Göttingen, Institute of Mathematics, Bunsenstrasse 3-5, 37073 Göttingen, Germany
2 Department of Mathematics, Panepistemiopolis, 157-84, Athens, Greece
@article{CRMATH_2011__349_13-14_745_0,
     author = {Androulidakis, Iakovos and Nestoridis, Vassili},
     title = {Extensions of the disc algebra and of {Mergelyan's} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {745--748},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.002/}
}
TY  - JOUR
AU  - Androulidakis, Iakovos
AU  - Nestoridis, Vassili
TI  - Extensions of the disc algebra and of Mergelyanʼs theorem
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 745
EP  - 748
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.06.002/
DO  - 10.1016/j.crma.2011.06.002
LA  - en
ID  - CRMATH_2011__349_13-14_745_0
ER  - 
%0 Journal Article
%A Androulidakis, Iakovos
%A Nestoridis, Vassili
%T Extensions of the disc algebra and of Mergelyanʼs theorem
%J Comptes Rendus. Mathématique
%D 2011
%P 745-748
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.06.002/
%R 10.1016/j.crma.2011.06.002
%G en
%F CRMATH_2011__349_13-14_745_0
Androulidakis, Iakovos; Nestoridis, Vassili. Extensions of the disc algebra and of Mergelyanʼs theorem. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 745-748. doi : 10.1016/j.crma.2011.06.002. http://www.numdam.org/articles/10.1016/j.crma.2011.06.002/

[1] Ahlfors, L.V. Complex Analysis, An Introduction to the Theory of Analytic Functions of One Complex Variable, McGraw–Hill, New York, 1966

[2] Brown, L.; Gauthier, P.M.; Hengartner, W. Continuous boundary behaviour for functions defined in the open unit disc, Nagoya Math. J., Volume 57 (1975), pp. 49-58

[3] Dugundji, J. Topology, Allyn and Bacon Inc., Atlantic Avenue, Boston, 1968

[4] Gauthier, P.M.; Roth, A.; Walsh, J.L. Possibility of uniform rational approximation in Spherical metric, Canad. J. Math., Volume XXVIII (1976) no. 1, pp. 112-115

[5] Hirsch, M.W. Differential Topology, Grad. Texts in Math., vol. 33, Springer, 1976

[6] Koosis, P. Introduction to Hp Spaces, London Math. Soc. Lecture Note Ser., vol. 40, Cambridge Univ. Press, Cambridge, London, NY, New Rochelle, Melbourne, Sydney, 1980 (pp. 69–82)

[7] Nestoridis, V. An extension of the disc algebra, 2010 | arXiv

[8] V. Nestoridis, An extension of the disc algebra, I, 2010, submitted for publication.

[9] Nestoridis, V.; Papadatos, N. Another extension of the disc algebra, 2010 | arXiv

[10] V. Nestoridis, N. Papadatos, An extension of the disc algebra, II, 2010, submitted for publication.

[11] Nestoridis, V.; Papadoperakis, I. A remark on two extensions of the disc algebra and Mergelyanʼs theorem | arXiv

[12] Rudin, W. Real and Complex Analysis, McGraw–Hill, NY, St. Louis, San Francisco, Toronto, Sydney, 1986

[13] Spivak, M. A Comprehensive Introduction to Differential Geometry, vol. 1, Brandeis University, 1970

[14] Stegenga, D.; Stephenson, K. Generic covering properties for spaces of analytic functions, Pacific J. Math., Volume 119 (1985) no. 6, pp. 227-243

Cité par Sources :