Dans cette Note, nous améliorons lʼestimation des constantes dans la généralisation par Ohsawa du théorème dʼextension de Ohsawa–Takegoshi concernant les fonctions holomorphes, et nous appliquons ce résultat à lʼétude de la conjecture de Suita. Nous présentons également une remarque permettant de généraliser le théorème dʼextension de Ohsawa–Takegoshi au cas des -formes lisses -fermées. Enfin, nous montrons que le facteur tordu dans lʼidentité tordue de Bochner–Kodaira peut être une fonction plurisuperharmonique non lisse.
In this Note, we improve the estimate in Ohsawaʼs generalization of the Ohsawa–Takegoshi extension theorem for holomorphic functions by finding a smaller constant, and apply the result to the Suita conjecture. We also present a remark allowing to generalize the Ohsawa–Takegoshi extension theorem to the case of -closed smooth -forms. Finally, we prove that the twist factor in the twisted Bochner–Kodaira identity can be a non-smooth plurisuperharmonic function.
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_797_0, author = {Guan, Qi'an and Zhou, Xiangyu and Zhu, Langfeng}, title = {On the {Ohsawa{\textendash}Takegoshi} $ {L}^{2}$ extension theorem and the twisted {Bochner{\textendash}Kodaira} identity}, journal = {Comptes Rendus. Math\'ematique}, pages = {797--800}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.06.001/} }
TY - JOUR AU - Guan, Qiʼan AU - Zhou, Xiangyu AU - Zhu, Langfeng TI - On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity JO - Comptes Rendus. Mathématique PY - 2011 SP - 797 EP - 800 VL - 349 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.06.001/ DO - 10.1016/j.crma.2011.06.001 LA - en ID - CRMATH_2011__349_13-14_797_0 ER -
%0 Journal Article %A Guan, Qiʼan %A Zhou, Xiangyu %A Zhu, Langfeng %T On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity %J Comptes Rendus. Mathématique %D 2011 %P 797-800 %V 349 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.06.001/ %R 10.1016/j.crma.2011.06.001 %G en %F CRMATH_2011__349_13-14_797_0
Guan, Qiʼan; Zhou, Xiangyu; Zhu, Langfeng. On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 797-800. doi : 10.1016/j.crma.2011.06.001. http://www.numdam.org/articles/10.1016/j.crma.2011.06.001/
[1] The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094
[2] Some estimates for the Bergman kernel and metric in terms of logarithmic capacity, Nagoya Math. J., Volume 185 (2007), pp. 143-150
[3] On the extension of holomorphic -forms, Chin. Ann. Math. Ser. A, Volume 19 (1998), pp. 433-436 (in Chinese)
[4] A remark on an extension theorem of Ohsawa, Chin. Ann. Math. Ser. A, Volume 24 (2003), pp. 129-134 (in Chinese)
[5] On the Ohsawa–Takegoshi–Manivel extension theorem, Paris, September 1997 (Progress in Mathematics) (2000)
[6] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html (electronically accessible at)
[7] Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010
[8] -cohomology and index theorem for the Bergman metric, Ann. of Math. (2), Volume 118 (1983), pp. 593-618
[9] On the differential form spectrum of negatively curved Riemann manifolds, Amer. J. Math., Volume 106 (1984), pp. 169-185
[10] Prolongement de courants positifs à travers une sous-variété CR, J. Math. Pures Appl. (9), Volume 78 (1999) no. 9, pp. 895-911
[11] Q. Guan, X. Zhou, L. Zhu, On the Ohsawa–Takegoshi extension theorem and the twisted Bochner–Kodaira identity with a non-smooth twist factor, preprint, 2010.
[12] Removable singularities for positive currents, Amer. J. Math., Volume 96 (1974), pp. 67-78
[13] Un théorème de prolongement de sections holomorphes dʼun fibré vectoriel, Math. Z., Volume 212 (1993), pp. 107-122
[14] Analytic inversion of adjunction: extension theorems with gain, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 3, pp. 703-718
[15] On the extension of holomorphic functions. III. Negligible weights, Math. Z., Volume 219 (1995) no. 2, pp. 215-225
[16] On the extension of holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204
[17] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Volume 17 (1982), pp. 55-138
[18] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Geometric Complex Analysis, Hayama, World Scientific, 1996, pp. 577-592
[19] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217
Cité par Sources :