Dans cette Note, nous améliorons lʼestimation des constantes dans la généralisation par Ohsawa du théorème dʼextension
In this Note, we improve the estimate in Ohsawaʼs generalization of the Ohsawa–Takegoshi
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_797_0, author = {Guan, Qi'an and Zhou, Xiangyu and Zhu, Langfeng}, title = {On the {Ohsawa{\textendash}Takegoshi} $ {L}^{2}$ extension theorem and the twisted {Bochner{\textendash}Kodaira} identity}, journal = {Comptes Rendus. Math\'ematique}, pages = {797--800}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.001}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.06.001/} }
TY - JOUR AU - Guan, Qiʼan AU - Zhou, Xiangyu AU - Zhu, Langfeng TI - On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity JO - Comptes Rendus. Mathématique PY - 2011 SP - 797 EP - 800 VL - 349 IS - 13-14 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.06.001/ DO - 10.1016/j.crma.2011.06.001 LA - en ID - CRMATH_2011__349_13-14_797_0 ER -
%0 Journal Article %A Guan, Qiʼan %A Zhou, Xiangyu %A Zhu, Langfeng %T On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity %J Comptes Rendus. Mathématique %D 2011 %P 797-800 %V 349 %N 13-14 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.06.001/ %R 10.1016/j.crma.2011.06.001 %G en %F CRMATH_2011__349_13-14_797_0
Guan, Qiʼan; Zhou, Xiangyu; Zhu, Langfeng. On the Ohsawa–Takegoshi $ {L}^{2}$ extension theorem and the twisted Bochner–Kodaira identity. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 797-800. doi : 10.1016/j.crma.2011.06.001. https://www.numdam.org/articles/10.1016/j.crma.2011.06.001/
[1] The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094
[2] Some estimates for the Bergman kernel and metric in terms of logarithmic capacity, Nagoya Math. J., Volume 185 (2007), pp. 143-150
[3] On the extension of
[4] A remark on an extension theorem of Ohsawa, Chin. Ann. Math. Ser. A, Volume 24 (2003), pp. 129-134 (in Chinese)
[5] On the Ohsawa–Takegoshi–Manivel
[6] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html (electronically accessible at)
[7] Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010
[8]
[9] On the differential form spectrum of negatively curved Riemann manifolds, Amer. J. Math., Volume 106 (1984), pp. 169-185
[10] Prolongement de courants positifs à travers une sous-variété CR, J. Math. Pures Appl. (9), Volume 78 (1999) no. 9, pp. 895-911
[11] Q. Guan, X. Zhou, L. Zhu, On the Ohsawa–Takegoshi
[12] Removable singularities for positive currents, Amer. J. Math., Volume 96 (1974), pp. 67-78
[13] Un théorème de prolongement
[14] Analytic inversion of adjunction:
[15] On the extension of
[16] On the extension of
[17] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Volume 17 (1982), pp. 55-138
[18] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Geometric Complex Analysis, Hayama, World Scientific, 1996, pp. 577-592
[19] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217
- Guan–Zhou's unified version of optimal
extension theorem on weakly pseudoconvex Kähler manifolds, Journal of the Mathematical Society of Japan, Volume 77 (2025) no. 1 | DOI:10.2969/jmsj/91919191 - Concavity property of minimal L2 integrals with Lebesgue measurable gain II, Advances in Mathematics, Volume 450 (2024), p. 109766 | DOI:10.1016/j.aim.2024.109766
- Characterizations of Griffiths positivity, pluriharmonicity and flatness, Journal of Functional Analysis, Volume 287 (2024) no. 7, p. 110532 | DOI:10.1016/j.jfa.2024.110532
- Optimal
Extension for Holomorphic Vector Bundles with Singular Hermitian Metrics, Peking Mathematical Journal (2024) | DOI:10.1007/s42543-024-00085-9 - L2 Extensions with Singular Metrics on Kähler Manifolds, Acta Mathematica Scientia, Volume 41 (2021) no. 6, p. 2021 | DOI:10.1007/s10473-021-0614-2
- Extension of cohomology classes and holomorphic sections defined on subvarieties, Journal of Algebraic Geometry, Volume 31 (2021) no. 1, p. 137 | DOI:10.1090/jag/766
- A remark on the extension of L2 holomorphic functions, International Journal of Mathematics, Volume 31 (2020) no. 02, p. 2050017 | DOI:10.1142/s0129167x20500172
- Siu’s lemma, optimal
extension and applications to twisted pluricanonical sheaves, Mathematische Annalen, Volume 377 (2020) no. 1-2, p. 675 | DOI:10.1007/s00208-018-1783-8 - Optimal L2 extension of sections from subvarieties in weakly pseudoconvex manifolds, Pacific Journal of Mathematics, Volume 309 (2020) no. 2, p. 475 | DOI:10.2140/pjm.2020.309.475
- Recent Results in Several Complex Variables and Complex Geometry, Proceedings of the Steklov Institute of Mathematics, Volume 311 (2020) no. 1, p. 245 | DOI:10.1134/s0081543820060164
- A Survey on the
Extension Theorems, The Journal of Geometric Analysis, Volume 30 (2020) no. 2, p. 1366 | DOI:10.1007/s12220-019-00349-2 - Недавние результаты в многомерном комплексном анализе и комплексной геометрии, Труды Математического института имени В. А. Стеклова, Volume 311 (2020), p. 264 | DOI:10.4213/tm4144
- On the extension of L2 holomorphic functions VIII — a remark on a theorem of Guan and Zhou, International Journal of Mathematics, Volume 28 (2017) no. 09, p. 1740005 | DOI:10.1142/s0129167x17400055
- A solution of an L^2 extension problem with an optimal estimate and applications, Annals of Mathematics (2015), p. 1139 | DOI:10.4007/annals.2015.181.3.6
- A Survey on L 2 Extension Problem, Complex Geometry and Dynamics, Volume 10 (2015), p. 291 | DOI:10.1007/978-3-319-20337-9_13
- Effectiveness of Demailly’s strong openness conjecture and related problems, Inventiones mathematicae, Volume 202 (2015) no. 2, p. 635 | DOI:10.1007/s00222-014-0575-3
- Optimal constant in an L 2 extension problem and a proof of a conjecture of Ohsawa, Science China Mathematics, Volume 58 (2015) no. 1, p. 35 | DOI:10.1007/s11425-014-4946-4
- On the Ohsawa–Takegoshi L2 extension theorem and the Bochner–Kodaira identity with non-smooth twist factor, Journal de Mathématiques Pures et Appliquées, Volume 97 (2012) no. 6, p. 579 | DOI:10.1016/j.matpur.2011.09.010
Cité par 18 documents. Sources : Crossref