Lʼintersection entre une orbite nilpotente et lʼalgèbre de Lie dʼun sous-groupe de Borel est une variété algébrique quasi-affine équidimensionnelle. Ses composantes irréductibles sont appelées variétés orbitales. Dans cette Note, on propose des critères pour quʼune variété orbitale soit lisse ou bien possède une orbite dense pour lʼaction adjointe de B. De plus, on souligne un lien possible entre ces deux propriétés.
The intersection between a nilpotent orbit and the Lie algebra of a Borel subgroup is an equidimensional, quasi-affine algebraic variety. Its irreducible components are called orbital varieties. In this Note, we provide criteria to guarantee that an orbital variety is smooth or has a dense orbit for the adjoint action of B. In addition, we point out a possible relation between these two properties.
Accepté le :
Publié le :
@article{CRMATH_2011__349_13-14_735_0, author = {Fresse, Lucas and Melnikov, Anna}, title = {On geometric properties of orbital varieties in type {A}}, journal = {Comptes Rendus. Math\'ematique}, pages = {735--739}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.05.016}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.016/} }
TY - JOUR AU - Fresse, Lucas AU - Melnikov, Anna TI - On geometric properties of orbital varieties in type A JO - Comptes Rendus. Mathématique PY - 2011 SP - 735 EP - 739 VL - 349 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.05.016/ DO - 10.1016/j.crma.2011.05.016 LA - en ID - CRMATH_2011__349_13-14_735_0 ER -
%0 Journal Article %A Fresse, Lucas %A Melnikov, Anna %T On geometric properties of orbital varieties in type A %J Comptes Rendus. Mathématique %D 2011 %P 735-739 %V 349 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.05.016/ %R 10.1016/j.crma.2011.05.016 %G en %F CRMATH_2011__349_13-14_735_0
Fresse, Lucas; Melnikov, Anna. On geometric properties of orbital varieties in type A. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 735-739. doi : 10.1016/j.crma.2011.05.016. http://www.numdam.org/articles/10.1016/j.crma.2011.05.016/
[1] On the singularity of the irreducible components of a Springer fiber in , Selecta Math. (N.S.), Volume 16 (2010), pp. 393-418
[2] L. Fresse, A. Melnikov, Some characterizations of singular components of Springer fibers in the two-column case, Algebr. Rep. Theory, , in press. | DOI
[3] On the singularity of some special components of Springer fibers, J. Lie Theory, Volume 21 (2011), pp. 205-242
[4] On the variety of a highest weight module, J. Algebra, Volume 88 (1984), pp. 238-278
[5] Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer-Verlag, 1982
[6] On the desingularization of the unipotent variety, Invent. Math., Volume 36 (1976), pp. 209-224
Cité par Sources :