Partial Differential Equations/Mathematical Problems in Mechanics
Band gaps and vibration of strongly heterogeneous Reissner–Mindlin elastic plates
[Bandes interdites et vibrations dans une plaque de Reissner–Mindlin fortement hétérogène]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 777-781.

On étudie lʼinfluence de fortes hétérogénéités sur la propagation des ondes dans une plaque de Reissner–Mindlin. On montre que lorsque certaines caractéristiques élastiques sont comparables à la taille des microstructures du composite il apparaît des bandes interdites, i.e. des intervalles de fréquences – les bandes interdites – pour lesquels la propagation des ondes ne peut pas se faire ou bien est restreinte à certaines polarisations.

We consider an elastic plate governed by the Reissner–Mindlinʼs model, i.e., whose equilibrium equations introduce a coupling between the vertical displacement and the rotation of the normal. This structure is made of a composite with a periodic arrangement of strongly heterogeneous materials and some characteristics of the heterogeneities are comparable to the size of the microstructures. We show that, when the size of the microstructures tends to zero, the limit homogeneous structure presents, for some wavelengths, a negative “mass density” tensor. This means that there exist intervals of frequencies – the band gaps – for which wave propagation is suppressed, or restricted to certain polarizations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.013
Rohan, Eduard 1 ; Miara, Bernadette 2

1 University of West Bohemia in Pilsen, Univerzitni 8, 30614 Plzen, Czech Republic
2 Université Paris-Est, ESIEE, département de modélisation et simulation numérique, cité Descartes, 2, boulevard Blaise-Pascal, 93160 Noisy-le-Grand cedex, France
@article{CRMATH_2011__349_13-14_777_0,
     author = {Rohan, Eduard and Miara, Bernadette},
     title = {Band gaps and vibration of strongly heterogeneous {Reissner{\textendash}Mindlin} elastic plates},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {777--781},
     publisher = {Elsevier},
     volume = {349},
     number = {13-14},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.013/}
}
TY  - JOUR
AU  - Rohan, Eduard
AU  - Miara, Bernadette
TI  - Band gaps and vibration of strongly heterogeneous Reissner–Mindlin elastic plates
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 777
EP  - 781
VL  - 349
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.05.013/
DO  - 10.1016/j.crma.2011.05.013
LA  - en
ID  - CRMATH_2011__349_13-14_777_0
ER  - 
%0 Journal Article
%A Rohan, Eduard
%A Miara, Bernadette
%T Band gaps and vibration of strongly heterogeneous Reissner–Mindlin elastic plates
%J Comptes Rendus. Mathématique
%D 2011
%P 777-781
%V 349
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.05.013/
%R 10.1016/j.crma.2011.05.013
%G en
%F CRMATH_2011__349_13-14_777_0
Rohan, Eduard; Miara, Bernadette. Band gaps and vibration of strongly heterogeneous Reissner–Mindlin elastic plates. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 777-781. doi : 10.1016/j.crma.2011.05.013. http://www.numdam.org/articles/10.1016/j.crma.2011.05.013/

[1] Avila, A.; Griso, G.; Miara, B.; Rohan, E. Multi-scale modelling of elastic waves: Theoretical justification and numerical simulation of band gaps, Multiscale Model. Simul., Volume 7 (2008) no. 1, pp. 1-21

[2] Cioranescu, D.; Damlamian, A.; Griso, G. The periodic unfolding method in homogenization, SIAM J. Math. Anal., Volume 40 (2008) no. 4, pp. 1585-1620

[3] Felbacq, D.; Bouchitté, G. Negative refraction in periodic and random photonic crystals, New J. Phys., Volume 7 (2005), p. 159

[4] Rohan, E.; Miara, B.; Seifrt, F. Numerical simulation of acoustic band gaps in homogenized elastic composites, Internat. J. Engrg. Sci., Volume 47 (2009), pp. 573-594

[5] Vasseur, J.O.; Deymier, P.A.; Djafari-Rouhani, B.; Pennec, Y.; Hladky-Hennion, A.-C. Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates, Phys. Rev. B, Volume 77 (2008), p. 085415

Cité par Sources :