Pour tout ensemble de mesure finie nous construisons un système dʼexponentielles qui est total dans et dont lʼensemble des fréquences a la densité critique, à savoir .
For every set of finite measure, we construct a system of exponentials which is complete in and such that the set of frequencies Λ has the critical density .
Accepté le :
Publié le :
@article{CRMATH_2011__349_11-12_679_0, author = {Olevskii, Alexander and Ulanovskii, Alexander}, title = {Uniqueness sets for unbounded spectra}, journal = {Comptes Rendus. Math\'ematique}, pages = {679--681}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.010/} }
TY - JOUR AU - Olevskii, Alexander AU - Ulanovskii, Alexander TI - Uniqueness sets for unbounded spectra JO - Comptes Rendus. Mathématique PY - 2011 SP - 679 EP - 681 VL - 349 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.05.010/ DO - 10.1016/j.crma.2011.05.010 LA - en ID - CRMATH_2011__349_11-12_679_0 ER -
%0 Journal Article %A Olevskii, Alexander %A Ulanovskii, Alexander %T Uniqueness sets for unbounded spectra %J Comptes Rendus. Mathématique %D 2011 %P 679-681 %V 349 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.05.010/ %R 10.1016/j.crma.2011.05.010 %G en %F CRMATH_2011__349_11-12_679_0
Olevskii, Alexander; Ulanovskii, Alexander. Uniqueness sets for unbounded spectra. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 679-681. doi : 10.1016/j.crma.2011.05.010. http://www.numdam.org/articles/10.1016/j.crma.2011.05.010/
[1] On support properties of -functions and their Fourier transforms, J. Funct. Anal., Volume 24 (1977) no. 3, pp. 258-267
[2] On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl., Volume 106 (1985) no. 1, pp. 180-183
[3] On the closure of characters and the zeros of entire functions, Acta Math., Volume 118 (1967), pp. 79-93
[4] A sparse regular sequence of exponentials closed on large sets, Bull. Amer. Math. Soc., Volume 70 (1964), pp. 566-569
[5] Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal., Volume 18 (2008) no. 3, pp. 1029-1052
[6] Interpolation in Bernstein and Paley–Wiener spaces, J. Funct. Anal., Volume 256 (2009) no. 10, pp. 3257-3278
[7] Approximation of discrete functions and size of spectrum, St. Petersburg Math. J., Volume 21 (2010), pp. 1015-1025
Cité par Sources :