Mathematical Analysis/Dynamical Systems
Hausdorff dimension of the multiplicative golden mean shift
[Dimension de Hausdorff du shift de Fibonacci multiplicatif]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 625-628.

Nous calculons la dimension de Hausdorff du « shift de Fibonacci multiplicatif », cʼest-à-dire lʼensemble des nombres réels dans [0,1] dont le développement en binaire (xk) satisfait xkx2k=0 pour tout k1. Nous montrons que la dimension de Hausdorff est plus petite que la dimension de Minkowski.

We compute the Hausdorff dimension of the “multiplicative golden mean shift” defined as the set of all reals in [0,1] whose binary expansion (xk) satisfies xkx2k=0 for all k1, and show that it is smaller than the Minkowski dimension.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.009
Kenyon, Richard 1 ; Peres, Yuval 2 ; Solomyak, Boris 3

1 Department of Mathematics, Brown University, Box 1917, 151 Thayer Street, Providence, RI 02912, USA
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
3 Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350, USA
@article{CRMATH_2011__349_11-12_625_0,
     author = {Kenyon, Richard and Peres, Yuval and Solomyak, Boris},
     title = {Hausdorff dimension of the multiplicative golden mean shift},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {625--628},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.009/}
}
TY  - JOUR
AU  - Kenyon, Richard
AU  - Peres, Yuval
AU  - Solomyak, Boris
TI  - Hausdorff dimension of the multiplicative golden mean shift
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 625
EP  - 628
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.05.009/
DO  - 10.1016/j.crma.2011.05.009
LA  - en
ID  - CRMATH_2011__349_11-12_625_0
ER  - 
%0 Journal Article
%A Kenyon, Richard
%A Peres, Yuval
%A Solomyak, Boris
%T Hausdorff dimension of the multiplicative golden mean shift
%J Comptes Rendus. Mathématique
%D 2011
%P 625-628
%V 349
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.05.009/
%R 10.1016/j.crma.2011.05.009
%G en
%F CRMATH_2011__349_11-12_625_0
Kenyon, Richard; Peres, Yuval; Solomyak, Boris. Hausdorff dimension of the multiplicative golden mean shift. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 625-628. doi : 10.1016/j.crma.2011.05.009. http://www.numdam.org/articles/10.1016/j.crma.2011.05.009/

[1] T. Bedford, Crinkly curves, Markov partitions and box dimension in self-similar sets, PhD thesis, University of Warwick, 1984.

[2] Billingsley, P. Ergodic Theory and Information, Wiley, New York, 1965

[3] Falconer, K. Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997

[4] Fan, A.; Liao, L.; Ma, J. Level sets of multiple ergodic averages (preprint) | arXiv

[5] Furstenberg, H. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49

[6] Kenyon, R.; Peres, Y.; Solomyak, B. Hausdorff dimension for fractals invariant under the multiplicative integers, 2011 (preprint) | arXiv

[7] McMullen, C. The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J., Volume 96 (1984), pp. 1-9

Cité par Sources :