Nous calculons la dimension de Hausdorff du « shift de Fibonacci multiplicatif », cʼest-à-dire lʼensemble des nombres réels dans dont le développement en binaire satisfait pour tout . Nous montrons que la dimension de Hausdorff est plus petite que la dimension de Minkowski.
We compute the Hausdorff dimension of the “multiplicative golden mean shift” defined as the set of all reals in whose binary expansion satisfies for all , and show that it is smaller than the Minkowski dimension.
Accepté le :
Publié le :
@article{CRMATH_2011__349_11-12_625_0, author = {Kenyon, Richard and Peres, Yuval and Solomyak, Boris}, title = {Hausdorff dimension of the multiplicative golden mean shift}, journal = {Comptes Rendus. Math\'ematique}, pages = {625--628}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.009/} }
TY - JOUR AU - Kenyon, Richard AU - Peres, Yuval AU - Solomyak, Boris TI - Hausdorff dimension of the multiplicative golden mean shift JO - Comptes Rendus. Mathématique PY - 2011 SP - 625 EP - 628 VL - 349 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.05.009/ DO - 10.1016/j.crma.2011.05.009 LA - en ID - CRMATH_2011__349_11-12_625_0 ER -
%0 Journal Article %A Kenyon, Richard %A Peres, Yuval %A Solomyak, Boris %T Hausdorff dimension of the multiplicative golden mean shift %J Comptes Rendus. Mathématique %D 2011 %P 625-628 %V 349 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.05.009/ %R 10.1016/j.crma.2011.05.009 %G en %F CRMATH_2011__349_11-12_625_0
Kenyon, Richard; Peres, Yuval; Solomyak, Boris. Hausdorff dimension of the multiplicative golden mean shift. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 625-628. doi : 10.1016/j.crma.2011.05.009. http://www.numdam.org/articles/10.1016/j.crma.2011.05.009/
[1] T. Bedford, Crinkly curves, Markov partitions and box dimension in self-similar sets, PhD thesis, University of Warwick, 1984.
[2] Ergodic Theory and Information, Wiley, New York, 1965
[3] Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997
[4] Level sets of multiple ergodic averages (preprint) | arXiv
[5] Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49
[6] Hausdorff dimension for fractals invariant under the multiplicative integers, 2011 (preprint) | arXiv
[7] The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J., Volume 96 (1984), pp. 1-9
Cité par Sources :