Algebra/Group Theory
Odd character degrees for Sp(2n,2)
[Degrés de caractères impairs sur Sp2n(2)]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 611-614.

Nous vérifions la conjecture de McKay sur les degrés de caractères dans le cas des groupes symplectiques sur le corps à deux éléments Sp2n(2) et du nombre premier 2. Nous montrons ensuite la condition de McKay inductive (Isaacs–Malle–Navarro) pour Sp4(2m) et tous les nombres premiers.

We check the McKay conjecture on character degrees for the case of symplectic groups over the field with two elements Sp2n(2) and the prime 2. Then we check the inductive McKay condition (Isaacs–Malle–Navarro) for Sp4(2m) and all primes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.007
Cabanes, Marc 1

1 Institut de Mathématiques de Jussieu, Université Paris 7, 175 rue du Chevaleret, F-75013 Paris, France
@article{CRMATH_2011__349_11-12_611_0,
     author = {Cabanes, Marc},
     title = {Odd character degrees for $ \mathrm{Sp}(2n,2)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {611--614},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.007/}
}
TY  - JOUR
AU  - Cabanes, Marc
TI  - Odd character degrees for $ \mathrm{Sp}(2n,2)$
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 611
EP  - 614
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.05.007/
DO  - 10.1016/j.crma.2011.05.007
LA  - en
ID  - CRMATH_2011__349_11-12_611_0
ER  - 
%0 Journal Article
%A Cabanes, Marc
%T Odd character degrees for $ \mathrm{Sp}(2n,2)$
%J Comptes Rendus. Mathématique
%D 2011
%P 611-614
%V 349
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.05.007/
%R 10.1016/j.crma.2011.05.007
%G en
%F CRMATH_2011__349_11-12_611_0
Cabanes, Marc. Odd character degrees for $ \mathrm{Sp}(2n,2)$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 611-614. doi : 10.1016/j.crma.2011.05.007. http://www.numdam.org/articles/10.1016/j.crma.2011.05.007/

[1] Brunat, O. On the inductive McKay condition in the defining characteristic, Math. Z., Volume 263 (2009) no. 2, pp. 411-424

[2] M. Cabanes, B. Späth, Equivariance and extendibility in finite reductive groups with connected center, in preparation, 2011.

[3] Carter, R. Simple Groups of Lie Type, Wiley, New York, 1972

[4] Digne, F.; Michel, J. Representations of Finite Groups of Lie Type, Cambridge University Press, 1991

[5] Gorenstein, D.; Lyons, R.; Solomon, R. The Classification of the Finite Simple Groups, Math. Surveys Monogr., vol. 3, Amer. Math. Soc., Providence, 1998

[6] Howlett, R. On the degrees of Steinberg characters of Chevalley groups, Math. Z., Volume 135 (1974), pp. 125-135

[7] Isaacs, M.; Malle, G.; Navarro, G. A reduction theorem for McKay conjecture, Invent. Math., Volume 170 (2007), pp. 33-101

[8] Lusztig, G. Irreducible representations of finite classical groups, Invent. Math., Volume 43 (1977), pp. 125-175

[9] Malle, G. Height 0 characters of finite groups of Lie type, Represent. Theory, Volume 11 (2007), pp. 192-220

[10] Malle, G. The inductive McKay condition for simple groups not of Lie type, Comm. Algebra, Volume 36 (2008) no. 2, pp. 455-463

[11] Späth, B. Sylow d-tori of classical groups and the McKay conjecture I, J. Algebra, Volume 323 (2010), pp. 2469-2493

[12] Späth, B. Sylow d-tori of classical groups and the McKay conjecture II, J. Algebra, Volume 323 (2010), pp. 2494-2509

[13] Späth, B. Inductive McKay condition in defining characteristic, 2010 (preprint) | arXiv

Cité par Sources :