Partial Differential Equations/Probability Theory
Wiener chaos and uniqueness for stochastic transport equation
[Chaos de Wiener et unicité pour lʼéquation de transport stochastique]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 669-672.

On prouve un résultat dʼunicité pour lʼéquation de transport linéaire stochastique (STLE), sans aucune hypothèse de type W1,1 ou BV sur le coefficient, qui est nécessaire pour lʼéquation déterministe correspondante. On utilise la décomposition en chaos de Wiener pour passer de la STLE à une équation de transport du second ordre déterministe avec la propriété dʼunicité.

We prove a uniqueness result for the stochastic transport linear equation (STLE), without any W1,1 or BV hypothesis on the coefficient, which is needed for the corresponding deterministic equation. We use Wiener chaos decomposition to pass from the STLE to a deterministic second-order transport equation with uniqueness property.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.006
Maurelli, Mario 1

1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
@article{CRMATH_2011__349_11-12_669_0,
     author = {Maurelli, Mario},
     title = {Wiener chaos and uniqueness for stochastic transport equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {669--672},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.006},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2011.05.006/}
}
TY  - JOUR
AU  - Maurelli, Mario
TI  - Wiener chaos and uniqueness for stochastic transport equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 669
EP  - 672
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2011.05.006/
DO  - 10.1016/j.crma.2011.05.006
LA  - en
ID  - CRMATH_2011__349_11-12_669_0
ER  - 
%0 Journal Article
%A Maurelli, Mario
%T Wiener chaos and uniqueness for stochastic transport equation
%J Comptes Rendus. Mathématique
%D 2011
%P 669-672
%V 349
%N 11-12
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2011.05.006/
%R 10.1016/j.crma.2011.05.006
%G en
%F CRMATH_2011__349_11-12_669_0
Maurelli, Mario. Wiener chaos and uniqueness for stochastic transport equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 669-672. doi : 10.1016/j.crma.2011.05.006. https://www.numdam.org/articles/10.1016/j.crma.2011.05.006/

[1] Ambrosio, L. Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004), pp. 227-260

[2] Ambrosio, L.; Crippa, G.; Figalli, A.; Spinolo, L.V. Some new well-posedness results for continuity and transport equation, and applications to the chromatography system, SIAM J. Math. Anal., Volume 41 (2009), pp. 1890-1920

[3] Attanasio, S.; Flandoli, F. Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplicative noise | arXiv

[4] Bouleau, N.; Hirsch, F. Dirichlet Forms and Analysis on Wiener Space, de Gruyter, Berlin, 1991

[5] Depauw, N. Non unicité des solutions bornées pour un champ de vecteurs BV en dehors dʼun hyperplan, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 249-252

[6] DiPerna, R.J.; Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547

[7] Flandoli, F.; Gubinelli, M.; Priola, E. Well-posedness of the transport equation by stochastic perturbation, Invent. Math., Volume 180 (2010), pp. 1-53

[8] Krylov, N.V.; Röckner, M. Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, Volume 131 (2005), pp. 154-196

[9] Le Jan, Y.; Raimond, O. Integration of Brownian vector fields, Ann. Probab., Volume 30 (2002), pp. 826-873

  • Fjordholm, Ulrik S.; Karlsen, Kenneth H.; Pang, Peter H. C. Convergent Finite Difference Schemes for Stochastic Transport Equations, SIAM Journal on Numerical Analysis, Volume 63 (2025) no. 1, p. 149 | DOI:10.1137/23m159946x
  • Modena, Stefano; Schenke, Andre Local Nonuniqueness for Stochastic Transport Equations with Deterministic Drift, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 4, p. 5209 | DOI:10.1137/23m1589104
  • Wei, Jinlong; Lv, Guangying; Wang, Wei Stochastic transport equation with bounded and Dini continuous drift, Journal of Differential Equations, Volume 323 (2022), p. 359 | DOI:10.1016/j.jde.2022.03.038
  • Flandoli, Franco; Pappalettera, Umberto 2D Euler Equations with Stratonovich Transport Noise as a Large-Scale Stochastic Model Reduction, Journal of Nonlinear Science, Volume 31 (2021) no. 1 | DOI:10.1007/s00332-021-09681-w
  • Bellingeri, C.; Djurdjevac, A.; Friz, P. K.; Tapia, N. Transport and continuity equations with (very) rough noise, Partial Differential Equations and Applications, Volume 2 (2021) no. 4 | DOI:10.1007/s42985-021-00101-y
  • Galeati, Lucio On the convergence of stochastic transport equations to a deterministic parabolic one, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 8 (2020) no. 4, p. 833 | DOI:10.1007/s40072-019-00162-6
  • Bedrossian, Jacob; Coti Zelati, Michele; Punshon-Smith, Samuel; Weber, Franziska A Sufficient Condition for the Kolmogorov 4/5 Law for Stationary Martingale Solutions to the 3D Navier–Stokes Equations, Communications in Mathematical Physics, Volume 367 (2019) no. 3, p. 1045 | DOI:10.1007/s00220-019-03396-6
  • Beck, Lisa; Flandoli, Franco; Gubinelli, Massimiliano; Maurelli, Mario Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ejp379
  • Mollinedo, David A. C.; Olivera, Christian Stochastic continuity equation with nonsmooth velocity, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 5, p. 1669 | DOI:10.1007/s10231-017-0633-8
  • Flandoli, Franco An Open Problem in the Theory of Regularization by Noise for Nonlinear PDEs, Stochastic Geometric Mechanics, Volume 202 (2017), p. 13 | DOI:10.1007/978-3-319-63453-1_2
  • Clarke, Jorge; Olivera, Christian; Tudor, Ciprian The transport equation and zero quadratic variation processes, Discrete and Continuous Dynamical Systems - Series B, Volume 21 (2016) no. 9, p. 2991 | DOI:10.3934/dcdsb.2016083
  • Olivera, Christian; Tudor, Ciprian A. The density of the solution to the stochastic transport equation with fractional noise, Journal of Mathematical Analysis and Applications, Volume 431 (2015) no. 1, p. 57 | DOI:10.1016/j.jmaa.2015.05.030
  • Flandoli, Franco; Maurelli, Mario; Neklyudov, Mikhail Noise Prevents Infinite Stretching of the Passive Field in a Stochastic Vector Advection Equation, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 4, p. 805 | DOI:10.1007/s00021-014-0187-0

Cité par 13 documents. Sources : Crossref