On prouve un résultat dʼunicité pour lʼéquation de transport linéaire stochastique (STLE), sans aucune hypothèse de type ou BV sur le coefficient, qui est nécessaire pour lʼéquation déterministe correspondante. On utilise la décomposition en chaos de Wiener pour passer de la STLE à une équation de transport du second ordre déterministe avec la propriété dʼunicité.
We prove a uniqueness result for the stochastic transport linear equation (STLE), without any or BV hypothesis on the coefficient, which is needed for the corresponding deterministic equation. We use Wiener chaos decomposition to pass from the STLE to a deterministic second-order transport equation with uniqueness property.
Accepté le :
Publié le :
@article{CRMATH_2011__349_11-12_669_0, author = {Maurelli, Mario}, title = {Wiener chaos and uniqueness for stochastic transport equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {669--672}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.006/} }
TY - JOUR AU - Maurelli, Mario TI - Wiener chaos and uniqueness for stochastic transport equation JO - Comptes Rendus. Mathématique PY - 2011 SP - 669 EP - 672 VL - 349 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.05.006/ DO - 10.1016/j.crma.2011.05.006 LA - en ID - CRMATH_2011__349_11-12_669_0 ER -
%0 Journal Article %A Maurelli, Mario %T Wiener chaos and uniqueness for stochastic transport equation %J Comptes Rendus. Mathématique %D 2011 %P 669-672 %V 349 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.05.006/ %R 10.1016/j.crma.2011.05.006 %G en %F CRMATH_2011__349_11-12_669_0
Maurelli, Mario. Wiener chaos and uniqueness for stochastic transport equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 669-672. doi : 10.1016/j.crma.2011.05.006. http://www.numdam.org/articles/10.1016/j.crma.2011.05.006/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004), pp. 227-260
[2] Some new well-posedness results for continuity and transport equation, and applications to the chromatography system, SIAM J. Math. Anal., Volume 41 (2009), pp. 1890-1920
[3] Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplicative noise | arXiv
[4] Dirichlet Forms and Analysis on Wiener Space, de Gruyter, Berlin, 1991
[5] Non unicité des solutions bornées pour un champ de vecteurs BV en dehors dʼun hyperplan, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 249-252
[6] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547
[7] Well-posedness of the transport equation by stochastic perturbation, Invent. Math., Volume 180 (2010), pp. 1-53
[8] Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, Volume 131 (2005), pp. 154-196
[9] Integration of Brownian vector fields, Ann. Probab., Volume 30 (2002), pp. 826-873
Cité par Sources :