Partial Differential Equations/Probability Theory
Wiener chaos and uniqueness for stochastic transport equation
[Chaos de Wiener et unicité pour lʼéquation de transport stochastique]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 669-672.

On prouve un résultat dʼunicité pour lʼéquation de transport linéaire stochastique (STLE), sans aucune hypothèse de type W1,1 ou BV sur le coefficient, qui est nécessaire pour lʼéquation déterministe correspondante. On utilise la décomposition en chaos de Wiener pour passer de la STLE à une équation de transport du second ordre déterministe avec la propriété dʼunicité.

We prove a uniqueness result for the stochastic transport linear equation (STLE), without any W1,1 or BV hypothesis on the coefficient, which is needed for the corresponding deterministic equation. We use Wiener chaos decomposition to pass from the STLE to a deterministic second-order transport equation with uniqueness property.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.006
Maurelli, Mario 1

1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
@article{CRMATH_2011__349_11-12_669_0,
     author = {Maurelli, Mario},
     title = {Wiener chaos and uniqueness for stochastic transport equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {669--672},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.006/}
}
TY  - JOUR
AU  - Maurelli, Mario
TI  - Wiener chaos and uniqueness for stochastic transport equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 669
EP  - 672
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.05.006/
DO  - 10.1016/j.crma.2011.05.006
LA  - en
ID  - CRMATH_2011__349_11-12_669_0
ER  - 
%0 Journal Article
%A Maurelli, Mario
%T Wiener chaos and uniqueness for stochastic transport equation
%J Comptes Rendus. Mathématique
%D 2011
%P 669-672
%V 349
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.05.006/
%R 10.1016/j.crma.2011.05.006
%G en
%F CRMATH_2011__349_11-12_669_0
Maurelli, Mario. Wiener chaos and uniqueness for stochastic transport equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 669-672. doi : 10.1016/j.crma.2011.05.006. http://www.numdam.org/articles/10.1016/j.crma.2011.05.006/

[1] Ambrosio, L. Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004), pp. 227-260

[2] Ambrosio, L.; Crippa, G.; Figalli, A.; Spinolo, L.V. Some new well-posedness results for continuity and transport equation, and applications to the chromatography system, SIAM J. Math. Anal., Volume 41 (2009), pp. 1890-1920

[3] Attanasio, S.; Flandoli, F. Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplicative noise | arXiv

[4] Bouleau, N.; Hirsch, F. Dirichlet Forms and Analysis on Wiener Space, de Gruyter, Berlin, 1991

[5] Depauw, N. Non unicité des solutions bornées pour un champ de vecteurs BV en dehors dʼun hyperplan, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 249-252

[6] DiPerna, R.J.; Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547

[7] Flandoli, F.; Gubinelli, M.; Priola, E. Well-posedness of the transport equation by stochastic perturbation, Invent. Math., Volume 180 (2010), pp. 1-53

[8] Krylov, N.V.; Röckner, M. Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, Volume 131 (2005), pp. 154-196

[9] Le Jan, Y.; Raimond, O. Integration of Brownian vector fields, Ann. Probab., Volume 30 (2002), pp. 826-873

Cité par Sources :