On prouve un résultat dʼunicité pour lʼéquation de transport linéaire stochastique (STLE), sans aucune hypothèse de type
We prove a uniqueness result for the stochastic transport linear equation (STLE), without any
Accepté le :
Publié le :
@article{CRMATH_2011__349_11-12_669_0, author = {Maurelli, Mario}, title = {Wiener chaos and uniqueness for stochastic transport equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {669--672}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.006}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.05.006/} }
TY - JOUR AU - Maurelli, Mario TI - Wiener chaos and uniqueness for stochastic transport equation JO - Comptes Rendus. Mathématique PY - 2011 SP - 669 EP - 672 VL - 349 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.05.006/ DO - 10.1016/j.crma.2011.05.006 LA - en ID - CRMATH_2011__349_11-12_669_0 ER -
%0 Journal Article %A Maurelli, Mario %T Wiener chaos and uniqueness for stochastic transport equation %J Comptes Rendus. Mathématique %D 2011 %P 669-672 %V 349 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.05.006/ %R 10.1016/j.crma.2011.05.006 %G en %F CRMATH_2011__349_11-12_669_0
Maurelli, Mario. Wiener chaos and uniqueness for stochastic transport equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 669-672. doi : 10.1016/j.crma.2011.05.006. https://www.numdam.org/articles/10.1016/j.crma.2011.05.006/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004), pp. 227-260
[2] Some new well-posedness results for continuity and transport equation, and applications to the chromatography system, SIAM J. Math. Anal., Volume 41 (2009), pp. 1890-1920
[3] Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplicative noise | arXiv
[4] Dirichlet Forms and Analysis on Wiener Space, de Gruyter, Berlin, 1991
[5] Non unicité des solutions bornées pour un champ de vecteurs BV en dehors dʼun hyperplan, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 249-252
[6] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547
[7] Well-posedness of the transport equation by stochastic perturbation, Invent. Math., Volume 180 (2010), pp. 1-53
[8] Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, Volume 131 (2005), pp. 154-196
[9] Integration of Brownian vector fields, Ann. Probab., Volume 30 (2002), pp. 826-873
- Convergent Finite Difference Schemes for Stochastic Transport Equations, SIAM Journal on Numerical Analysis, Volume 63 (2025) no. 1, p. 149 | DOI:10.1137/23m159946x
- Local Nonuniqueness for Stochastic Transport Equations with Deterministic Drift, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 4, p. 5209 | DOI:10.1137/23m1589104
- Stochastic transport equation with bounded and Dini continuous drift, Journal of Differential Equations, Volume 323 (2022), p. 359 | DOI:10.1016/j.jde.2022.03.038
- 2D Euler Equations with Stratonovich Transport Noise as a Large-Scale Stochastic Model Reduction, Journal of Nonlinear Science, Volume 31 (2021) no. 1 | DOI:10.1007/s00332-021-09681-w
- Transport and continuity equations with (very) rough noise, Partial Differential Equations and Applications, Volume 2 (2021) no. 4 | DOI:10.1007/s42985-021-00101-y
- On the convergence of stochastic transport equations to a deterministic parabolic one, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 8 (2020) no. 4, p. 833 | DOI:10.1007/s40072-019-00162-6
- A Sufficient Condition for the Kolmogorov 4/5 Law for Stationary Martingale Solutions to the 3D Navier–Stokes Equations, Communications in Mathematical Physics, Volume 367 (2019) no. 3, p. 1045 | DOI:10.1007/s00220-019-03396-6
- Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ejp379
- Stochastic continuity equation with nonsmooth velocity, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 5, p. 1669 | DOI:10.1007/s10231-017-0633-8
- An Open Problem in the Theory of Regularization by Noise for Nonlinear PDEs, Stochastic Geometric Mechanics, Volume 202 (2017), p. 13 | DOI:10.1007/978-3-319-63453-1_2
- The transport equation and zero quadratic variation processes, Discrete and Continuous Dynamical Systems - Series B, Volume 21 (2016) no. 9, p. 2991 | DOI:10.3934/dcdsb.2016083
- The density of the solution to the stochastic transport equation with fractional noise, Journal of Mathematical Analysis and Applications, Volume 431 (2015) no. 1, p. 57 | DOI:10.1016/j.jmaa.2015.05.030
- Noise Prevents Infinite Stretching of the Passive Field in a Stochastic Vector Advection Equation, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 4, p. 805 | DOI:10.1007/s00021-014-0187-0
Cité par 13 documents. Sources : Crossref