Partial Differential Equations
On the regularity of null-controls of the linear 1-d heat equation
[Sur la regularité des contrôles pour lʼéquation de la chaleur linéaire]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 673-677.

Lʼéquation de la chaleur 1-d dans un intervalle borné est contrôlable depuis le bord. Plus précisément, pour tout y0L2(0,1) il existe un unique contrôle frontière de norme L2(0,T) minimale qui conduit la solution de lʼéquation linéaire de la chaleur à zéro à lʼinstant T>0. Ce contrôle est donné par la dérivée normale au bord dʼune solution de lʼéquation adjointe avec une donnée initiale φˆ0 qui minimise une fonction coût quadratique. Dans cet article nous étudions la relation entre la régularité de y0 et celle de φˆ0. Nous montrons que, si y0 a une seule fréquence de Fourier, la fonction φˆ0 correspondante nʼappartient à aucun espace de Sobolev dʼexposant négatif. Ce fait explique le caractère mal posé du problème et lʼinefficacité de la plupart des algorithmes numériques existants et en particulier la convergence lente des méthodes de régularisation de type Tychonoff.

The 1-d heat equation in a bounded interval is null-controllable from the boundary. More precisely, for each initial data y0L2(0,1) there corresponds a unique boundary control of minimal L2(0,T)-norm which drives the state of the 1-d linear heat equation to zero in time T>0. This control is given as the normal derivative of a solution of the homogeneous adjoint equation whose initial data φˆ0 minimizes a suitable quadratic cost functional. In this Note we analyze the relation between the regularity of the initial datum to be controlled y0 and that of φˆ0. We show that, if y0 has only one Fourier mode, the corresponding φˆ0 does not belong to any Sobolev space of negative exponent. This explains the severe ill-posedness of the problem and the lack of efficiency of most of the existing numerical algorithms for the numerical approximation of the controls, and in particular the slow convergence rate of Tychonoff regularization procedures.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.005
Micu, Sorin 1 ; Zuazua, Enrique 2, 3

1 Facultatea de Matematica si Informatica, Universitatea din Craiova, Al. I. Cuza 13, Craiova 200585, Romania
2 Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao, Basque Country, Spain
3 BCAM – Basque Center for Applied Mathematics, Bizkaia Technology Park 500, 48160, Derio, Basque Country, Spain
@article{CRMATH_2011__349_11-12_673_0,
     author = {Micu, Sorin and Zuazua, Enrique},
     title = {On the regularity of null-controls of the linear 1-d heat equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {673--677},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.005/}
}
TY  - JOUR
AU  - Micu, Sorin
AU  - Zuazua, Enrique
TI  - On the regularity of null-controls of the linear 1-d heat equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 673
EP  - 677
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.05.005/
DO  - 10.1016/j.crma.2011.05.005
LA  - en
ID  - CRMATH_2011__349_11-12_673_0
ER  - 
%0 Journal Article
%A Micu, Sorin
%A Zuazua, Enrique
%T On the regularity of null-controls of the linear 1-d heat equation
%J Comptes Rendus. Mathématique
%D 2011
%P 673-677
%V 349
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.05.005/
%R 10.1016/j.crma.2011.05.005
%G en
%F CRMATH_2011__349_11-12_673_0
Micu, Sorin; Zuazua, Enrique. On the regularity of null-controls of the linear 1-d heat equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 673-677. doi : 10.1016/j.crma.2011.05.005. http://www.numdam.org/articles/10.1016/j.crma.2011.05.005/

[1] M. Berggrem, Optimal control of time evolution systems: Controllability investigations and numerical algorithms, Ph.D. thesis, Rice University, Houston, 1995.

[2] Carthel, C.; Glowinski, R.; Lions, J.-L. On exact and approximate boundary controllabilities for the heat equation: A numerical approach, J. Optim. Theory Appl., Volume 82 (1994), pp. 429-484

[3] Fattorini, H.O.; Russell, D.L. Exact controllability theorems for linear parabolic equation in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 272-292

[4] Glowinski, R.; Lions, J.-L.; He, J. Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach, Encyclopedia of Mathematics and Its Applications, vol. 117, Cambridge University Press, Cambridge, 2008

[5] Lions, J.-L. Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971

[6] Micu, S.; Zuazua, E. An introduction to the controllability of partial differential equations (Sari, Tewfik, ed.), Quelques questions de théorie du contrôle, Collection Travaux en Cours, Hermann, 2005, pp. 69-157

[7] S. Micu, E. Zuazua, Regularity issues for the null-controllability of the linear 1-d heat equation, preprint, 2010.

[8] Münch, A.; Zuazua, E. Numerical approximation of trajectory controls for the heat equation through transmutation, J. Inverse Problems, Volume 26 (2010) no. 8, p. 085018 (39 pp) | DOI

[9] Zuazua, A.E. Controllability and observability of partial differential equations: Some results and open problems (Dafermos, C.M.; Feireisl, E., eds.), Handbook of Differential Equations: Evolutionary Equations, vol. 3, Elsevier Science, 2006, pp. 527-621

Cité par Sources :