Pour , nous construisons des solutions globales, explosives, et non radiales de lʼéquation dans .
Given , we construct nonradial entire large solutions to the equation in .
Accepté le :
Publié le :
@article{CRMATH_2011__349_11-12_653_0, author = {Dupaigne, Louis}, title = {Anisotropic entire large solutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {653--656}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.002/} }
TY - JOUR AU - Dupaigne, Louis TI - Anisotropic entire large solutions JO - Comptes Rendus. Mathématique PY - 2011 SP - 653 EP - 656 VL - 349 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.05.002/ DO - 10.1016/j.crma.2011.05.002 LA - en ID - CRMATH_2011__349_11-12_653_0 ER -
Dupaigne, Louis. Anisotropic entire large solutions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 653-656. doi : 10.1016/j.crma.2011.05.002. http://www.numdam.org/articles/10.1016/j.crma.2011.05.002/
[1] Asymptotic behaviour of the solutions of sublinear elliptic equations with a potential, Appl. Anal., Volume 70 (1999) no. 3–4, pp. 233-258 | DOI
[2] Comments on two notes by L. Ma and X. Xu, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 269-271
[3] Symétrie : si, mais seulement si ?, AMS Contemporary Mathematics, vol. 528, AMS, 2010 (Symmetry for Elliptic PDEs)
[4] L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault, Entire large solutions for semilinear elliptic equations, preprint.
[5] Non-negative radial solution for an elliptic equation, J. Partial Differ. Equ., Volume 18 (2005) no. 1, pp. 13-21
[6] On solutions of , Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510
[7] On the inequality , Pacific J. Math., Volume 7 (1957), pp. 1641-1647
[8] Radial symmetry of large solutions of nonlinear elliptic equations, Proc. Amer. Math. Soc., Volume 124 (1996) no. 2, pp. 447-455
Cité par Sources :