Partial Differential Equations
Anisotropic entire large solutions
[Solutions entières, explosives et anisotropes]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 653-656.

Pour q(0,1], nous construisons des solutions globales, explosives, et non radiales de lʼéquation Δu=uq dans RN.

Given q(0,1], we construct nonradial entire large solutions to the equation Δu=uq in RN.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.002
Dupaigne, Louis 1

1 LAMFA, UMR CNRS 6140, Université Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
@article{CRMATH_2011__349_11-12_653_0,
     author = {Dupaigne, Louis},
     title = {Anisotropic entire large solutions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {653--656},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.002/}
}
TY  - JOUR
AU  - Dupaigne, Louis
TI  - Anisotropic entire large solutions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 653
EP  - 656
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.05.002/
DO  - 10.1016/j.crma.2011.05.002
LA  - en
ID  - CRMATH_2011__349_11-12_653_0
ER  - 
%0 Journal Article
%A Dupaigne, Louis
%T Anisotropic entire large solutions
%J Comptes Rendus. Mathématique
%D 2011
%P 653-656
%V 349
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.05.002/
%R 10.1016/j.crma.2011.05.002
%G en
%F CRMATH_2011__349_11-12_653_0
Dupaigne, Louis. Anisotropic entire large solutions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 653-656. doi : 10.1016/j.crma.2011.05.002. http://www.numdam.org/articles/10.1016/j.crma.2011.05.002/

[1] Bidaut-Véron, M.-F.; Grillot, P. Asymptotic behaviour of the solutions of sublinear elliptic equations with a potential, Appl. Anal., Volume 70 (1999) no. 3–4, pp. 233-258 | DOI

[2] Brezis, H. Comments on two notes by L. Ma and X. Xu, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 269-271

[3] Dupaigne, L. Symétrie : si, mais seulement si ?, AMS Contemporary Mathematics, vol. 528, AMS, 2010 (Symmetry for Elliptic PDEs)

[4] L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault, Entire large solutions for semilinear elliptic equations, preprint.

[5] Yang, G.; Guo, Z. Non-negative radial solution for an elliptic equation, J. Partial Differ. Equ., Volume 18 (2005) no. 1, pp. 13-21

[6] Keller, J.B. On solutions of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510

[7] Osserman, R. On the inequality Δuf(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647

[8] Taliaferro, S.D. Radial symmetry of large solutions of nonlinear elliptic equations, Proc. Amer. Math. Soc., Volume 124 (1996) no. 2, pp. 447-455

Cité par Sources :