Soit . Dans cette Note, nous expliquerons comment on peut déterminer le comportement asymptotique du nombre de points rationnels (avec et ) de hauteur bornée sur lʼhyperplan tels que est un entier puissant pour chaque , lorsque B tend vers lʼinfini. (Un entier a est appelé puissant si pour chaque nombre premier p divisant a, on a que aussi divise a.) La méthode principale quʼon utilise ici est la méthode du cercle de Hardy–Littlewood (classique).
Let . In this Note, we explain how to determine the asymptotic behaviour of the size of the set of rational points (where and ) of bounded height on the hyperplane such that is squareful for each as B goes to infinity. (An integer a is called squareful if the exponent of each prime divisor of a is at least two.) The main tool we will use, is the (classical) Hardy–Littlewood circle method.
Accepté le :
Publié le :
@article{CRMATH_2011__349_11-12_603_0, author = {Van Valckenborgh, Karl}, title = {Squareful points of bounded height}, journal = {Comptes Rendus. Math\'ematique}, pages = {603--606}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.001/} }
TY - JOUR AU - Van Valckenborgh, Karl TI - Squareful points of bounded height JO - Comptes Rendus. Mathématique PY - 2011 SP - 603 EP - 606 VL - 349 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.05.001/ DO - 10.1016/j.crma.2011.05.001 LA - en ID - CRMATH_2011__349_11-12_603_0 ER -
Van Valckenborgh, Karl. Squareful points of bounded height. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 603-606. doi : 10.1016/j.crma.2011.05.001. http://www.numdam.org/articles/10.1016/j.crma.2011.05.001/
[1] Birational geometry for number theorists, Arithmetic Geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 2009, pp. 335-373
[2] Fibres multiples sur les surfaces : aspects geométriques, hyperboliques et arithmétiques, Manuscripta Math., Volume 117 (2005) no. 4, pp. 429-461
[3] Analytic Methods for Diophantine Equations and Diophantine Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2005 (With a foreword by R.C. Vaughan, D.R. Heath-Brown and D.E. Freeman, edited and prepared for publication by T.D. Browning)
[4] The projective line minus three fractional points, July 2006 http://www-math.mit.edu/~poonen/slides/campana_s.pdf
[5] Analytische Methoden für Diophantische Gleichungen. Einführende Vorlesungen, DMV Seminar, vol. 5, Birkhäuser Verlag, Basel, 1984
Cité par Sources :