Number Theory/Algebraic Geometry
Squareful points of bounded height
[Points puissants de hauteur bornée]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 603-606.

Soit n5. Dans cette Note, nous expliquerons comment on peut déterminer le comportement asymptotique du nombre de points rationnels (a0::an)Pn(Q) (avec a0,,anZ et pgcd(a0,,an)=1) de hauteur bornée maxi=0,,n|ai|B sur lʼhyperplan i=0nXi=0 tels que ai est un entier puissant pour chaque i{0,,n}, lorsque B tend vers lʼinfini. (Un entier a est appelé puissant si pour chaque nombre premier p divisant a, on a que p2 aussi divise a.) La méthode principale quʼon utilise ici est la méthode du cercle de Hardy–Littlewood (classique).

Let n5. In this Note, we explain how to determine the asymptotic behaviour of the size of the set of rational points (a0::an)Pn(Q) (where a0,,anZ and gcd(a0,,an)=1) of bounded height maxi=0,,n|ai|B on the hyperplane i=0nXi=0 such that ai is squareful for each i{0,,n} as B goes to infinity. (An integer a is called squareful if the exponent of each prime divisor of a is at least two.) The main tool we will use, is the (classical) Hardy–Littlewood circle method.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.001
Van Valckenborgh, Karl 1

1 K.U. Leuven, Department of Mathematics, Celestijnenlaan 200B, 3001 Leuven, Belgium
@article{CRMATH_2011__349_11-12_603_0,
     author = {Van Valckenborgh, Karl},
     title = {Squareful points of bounded height},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--606},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.05.001/}
}
TY  - JOUR
AU  - Van Valckenborgh, Karl
TI  - Squareful points of bounded height
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 603
EP  - 606
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.05.001/
DO  - 10.1016/j.crma.2011.05.001
LA  - en
ID  - CRMATH_2011__349_11-12_603_0
ER  - 
%0 Journal Article
%A Van Valckenborgh, Karl
%T Squareful points of bounded height
%J Comptes Rendus. Mathématique
%D 2011
%P 603-606
%V 349
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.05.001/
%R 10.1016/j.crma.2011.05.001
%G en
%F CRMATH_2011__349_11-12_603_0
Van Valckenborgh, Karl. Squareful points of bounded height. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 603-606. doi : 10.1016/j.crma.2011.05.001. http://www.numdam.org/articles/10.1016/j.crma.2011.05.001/

[1] Abramovich, D. Birational geometry for number theorists, Arithmetic Geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 2009, pp. 335-373

[2] Campana, F. Fibres multiples sur les surfaces : aspects geométriques, hyperboliques et arithmétiques, Manuscripta Math., Volume 117 (2005) no. 4, pp. 429-461

[3] Davenport, H. Analytic Methods for Diophantine Equations and Diophantine Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2005 (With a foreword by R.C. Vaughan, D.R. Heath-Brown and D.E. Freeman, edited and prepared for publication by T.D. Browning)

[4] Poonen, B. The projective line minus three fractional points, July 2006 http://www-math.mit.edu/~poonen/slides/campana_s.pdf

[5] Schmidt, W.M. Analytische Methoden für Diophantische Gleichungen. Einführende Vorlesungen, DMV Seminar, vol. 5, Birkhäuser Verlag, Basel, 1984

Cité par Sources :