Statistics
Large deviations theorems in nonparametric regression on functional data
[Théorèmes de grandes déviations pour la régression non paramétrique sur des données fonctionnelles]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 583-585.

Lʼobjet de cette Note est dʼétablir un principe de grandes déviations ponctuel et un principe de grandes déviations uniforme pour lʼestimateur à noyau de la régression sur des données fonctionnelles.

In this Note we prove large deviations principles for the Nadaraya–Watson estimator of the regression of a real-valued variable with a functional covariate. Under suitable conditions, we show pointwise and uniform large deviations theorems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.04.011
Cherfi, Mohamed 1

1 Laboratoire de statistique théorique et appliquée (LSTA), équipe dʼAccueil 3124, université Pierre et Marie Curie – Paris 6, tour 15-25, 2ème étage, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2011__349_9-10_583_0,
     author = {Cherfi, Mohamed},
     title = {Large deviations theorems in nonparametric regression on functional data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {583--585},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.04.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.011/}
}
TY  - JOUR
AU  - Cherfi, Mohamed
TI  - Large deviations theorems in nonparametric regression on functional data
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 583
EP  - 585
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.04.011/
DO  - 10.1016/j.crma.2011.04.011
LA  - en
ID  - CRMATH_2011__349_9-10_583_0
ER  - 
%0 Journal Article
%A Cherfi, Mohamed
%T Large deviations theorems in nonparametric regression on functional data
%J Comptes Rendus. Mathématique
%D 2011
%P 583-585
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.04.011/
%R 10.1016/j.crma.2011.04.011
%G en
%F CRMATH_2011__349_9-10_583_0
Cherfi, Mohamed. Large deviations theorems in nonparametric regression on functional data. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 583-585. doi : 10.1016/j.crma.2011.04.011. http://www.numdam.org/articles/10.1016/j.crma.2011.04.011/

[1] Bahadur, R.R. Some limit theorems in statistics, Conference Board of the Mathematical Sciences Regional Conference Series, Appl. Math., vol. 4, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1971

[2] Berrahou, N.; Louani, D. Efficiency of some tests when testing symmetry hypothesis, J. Nonparametr. Stat., Volume 18 (2006) no. 7–8, pp. 465-482 (2007)

[3] Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications, Appl. Math. (New York), vol. 38, Springer-Verlag, New York, 1998

[4] Ferraty, F.; Vieu, P. Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination, J. Nonparametr. Stat., Volume 16 (2004) no. 1–2, pp. 111-125

[5] Ferraty, F.; Vieu, P. Nonparametric functional data analysis, Theory and Practice, Springer Ser. Statist., Springer, New York, 2006

[6] Ferraty, F.; Vieu, P. Erratum of: “Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination” [J. Nonparametr. Stat. 16 (1–2) (2004) 111–125], J. Nonparametr. Stat., Volume 20 (2008) no. 2, pp. 187-189

[7] Ferraty, F.; Mas, A.; Vieu, P. Nonparametric regression on functional data: inference and practical aspects, Aust. N. Z. J. Stat., Volume 49 (2007) no. 3, pp. 267-286

[8] Ferraty, F.; Laksaci, A.; Tadj, A.; Vieu, P. Rate of uniform consistency for nonparametric estimates with functional variables, J. Statist. Plann. Inference, Volume 140 (2010) no. 2, pp. 335-352

[9] Joutard, C. Sharp large deviations in nonparametric estimation, J. Nonparametr. Stat., Volume 18 (2006) no. 3, pp. 293-306

[10] Korostelev, A. A minimaxity criterion in nonparametric regression based on large-deviations probabilities, Ann. Statist., Volume 24 (1996) no. 3, pp. 1075-1083

[11] Louani, D. Large deviations limit theorems for the kernel density estimator, Scand. J. Statist., Volume 25 (1998) no. 1, pp. 243-253

[12] Louani, D. Some large deviations limit theorems in conditional nonparametric statistics, Statistics, Volume 33 (1999) no. 2, pp. 171-196

[13] Mokkadem, A.; Pelletier, M.; Thiam, B. Large and moderate deviations principles for kernel estimators of the multivariate regression, Math. Methods Statist., Volume 17 (2008) no. 2, pp. 146-172

[14] Nikitin, Y. Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, Cambridge, 1995

Cité par Sources :