On construit un exemple de deux applications conformes φ et ψ du disque unité sur le même domaine telles que le rapport soit borné et le rapport non borné. On donne pour cela des expressions analytiques explicites pour φ, ψ.
An example is constructed of two Riemann maps φ and ψ of the unit disk onto the same domain such that is bounded but not bounded away from zero. This is shown by producing explicit analytic expressions of φ and ψ.
Accepté le :
Publié le :
@article{CRMATH_2011__349_9-10_511_0, author = {Smith, Wayne and Volberg, Alexander}, title = {A conformal mapping example}, journal = {Comptes Rendus. Math\'ematique}, pages = {511--514}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.010/} }
TY - JOUR AU - Smith, Wayne AU - Volberg, Alexander TI - A conformal mapping example JO - Comptes Rendus. Mathématique PY - 2011 SP - 511 EP - 514 VL - 349 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.04.010/ DO - 10.1016/j.crma.2011.04.010 LA - en ID - CRMATH_2011__349_9-10_511_0 ER -
Smith, Wayne; Volberg, Alexander. A conformal mapping example. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 511-514. doi : 10.1016/j.crma.2011.04.010. http://www.numdam.org/articles/10.1016/j.crma.2011.04.010/
[1] Brennanʼs conjecture and the Mandelbrot set, Int. Math. Res. Notices (IMRN) (1998), pp. 589-600
[2] The integrability of the derivative in conformal mapping, J. London Math. Soc. (2), Volume 18 (1978), pp. 261-272
[3] Bounded Analytic Functions, Academic Press, 1981
[4] Weighted Bergman spaces and the integral means spectrum of conformal mappings, Duke Math. J., Volume 127 (2005) no. 2, pp. 341-393
[5] Are there critical points on the boundaries of singular domains, Comm. Math. Phys., Volume 99 (1985) no. 4, pp. 593-612
[6] V. Matache, W. Smith, Composition operators on a class of analytic function spaces related to Brennanʼs conjecture, Complex Anal. Oper. Theory, , in press. | DOI
[7] Boundary Behavior of Conformal Maps, Springer-Verlag, 1992
[8] Critical points on the boundaries of Siegel disks, Bull. Amer. Math. Soc., Volume 32 (1995) no. 3, pp. 317-321
Cité par Sources :