Complex Analysis
A conformal mapping example
[Un exemple dʼapplication conforme]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 511-514.

On construit un exemple de deux applications conformes φ et ψ du disque unité sur le même domaine telles que le rapport φ/ψ soit borné et le rapport ψ/φ non borné. On donne pour cela des expressions analytiques explicites pour φ, ψ.

An example is constructed of two Riemann maps φ and ψ of the unit disk onto the same domain such that φ/ψ is bounded but not bounded away from zero. This is shown by producing explicit analytic expressions of φ and ψ.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.04.010
Smith, Wayne 1 ; Volberg, Alexander 2

1 Department of Mathematics, University of Hawaii, Honolulu, HI 96822, USA
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2011__349_9-10_511_0,
     author = {Smith, Wayne and Volberg, Alexander},
     title = {A conformal mapping example},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {511--514},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.04.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.010/}
}
TY  - JOUR
AU  - Smith, Wayne
AU  - Volberg, Alexander
TI  - A conformal mapping example
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 511
EP  - 514
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.04.010/
DO  - 10.1016/j.crma.2011.04.010
LA  - en
ID  - CRMATH_2011__349_9-10_511_0
ER  - 
%0 Journal Article
%A Smith, Wayne
%A Volberg, Alexander
%T A conformal mapping example
%J Comptes Rendus. Mathématique
%D 2011
%P 511-514
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.04.010/
%R 10.1016/j.crma.2011.04.010
%G en
%F CRMATH_2011__349_9-10_511_0
Smith, Wayne; Volberg, Alexander. A conformal mapping example. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 511-514. doi : 10.1016/j.crma.2011.04.010. http://www.numdam.org/articles/10.1016/j.crma.2011.04.010/

[1] Baranski, K.; Volberg, A.; Zdunik, A. Brennanʼs conjecture and the Mandelbrot set, Int. Math. Res. Notices (IMRN) (1998), pp. 589-600

[2] Brennan, J.E. The integrability of the derivative in conformal mapping, J. London Math. Soc. (2), Volume 18 (1978), pp. 261-272

[3] Garnett, J. Bounded Analytic Functions, Academic Press, 1981

[4] Hedenmalm, H.; Shimorin, S. Weighted Bergman spaces and the integral means spectrum of conformal mappings, Duke Math. J., Volume 127 (2005) no. 2, pp. 341-393

[5] Herman, M.-R. Are there critical points on the boundaries of singular domains, Comm. Math. Phys., Volume 99 (1985) no. 4, pp. 593-612

[6] V. Matache, W. Smith, Composition operators on a class of analytic function spaces related to Brennanʼs conjecture, Complex Anal. Oper. Theory, , in press. | DOI

[7] Pommerenke, Ch. Boundary Behavior of Conformal Maps, Springer-Verlag, 1992

[8] Rogers, J.T. Jr. Critical points on the boundaries of Siegel disks, Bull. Amer. Math. Soc., Volume 32 (1995) no. 3, pp. 317-321

Cité par Sources :