Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe, nous prouvons lʼexistence et lʼunicité des potentiels vecteurs en théorie
In a three-dimensional bounded possibly multiply-connected domain, we prove the existence and uniqueness of vector potentials in
Accepté le :
Publié le :
@article{CRMATH_2011__349_9-10_529_0, author = {Amrouche, Ch\'erif and Seloula, Nour El Houda}, title = {$ {L}^{p}$-theory for vector potentials and {Sobolev's} inequalities for vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--534}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.008}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.04.008/} }
TY - JOUR AU - Amrouche, Chérif AU - Seloula, Nour El Houda TI - $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields JO - Comptes Rendus. Mathématique PY - 2011 SP - 529 EP - 534 VL - 349 IS - 9-10 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.04.008/ DO - 10.1016/j.crma.2011.04.008 LA - en ID - CRMATH_2011__349_9-10_529_0 ER -
%0 Journal Article %A Amrouche, Chérif %A Seloula, Nour El Houda %T $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields %J Comptes Rendus. Mathématique %D 2011 %P 529-534 %V 349 %N 9-10 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.04.008/ %R 10.1016/j.crma.2011.04.008 %G en %F CRMATH_2011__349_9-10_529_0
Amrouche, Chérif; Seloula, Nour El Houda. $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 529-534. doi : 10.1016/j.crma.2011.04.008. https://www.numdam.org/articles/10.1016/j.crma.2011.04.008/
[1] Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864
[2] Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., Volume 119 (1994) no. 44, pp. 109-140
[3] C. Amrouche, N. Seloula,
[4] A remark on the regularity of solutions of Maxwellʼs equations on Lipschitz domains, Math. Methods Appl. Sci. Theory, Volume 12 (1990), pp. 365-368
[5] Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms, Springer, Berlin, 1986
[6] Estimating ∇u by div u,
Cité par Sources :