Combinatorics
Some notes on domination edge critical graphs
[Quelques remarques sur les graphes à domination critique par addition dʼarête]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 485-488.

Un graphe G est un graphe à domination critique par addition dʼarête, ou simplement γ-critique par arête, si pour toute arête e qui nʼest pas dans G on a γ(G+e)<γ(G). Nous caractérisons les graphes cactus, connexes et γ-critiques par arête.

A graph G is domination edge critical, or just γ-edge critical, if for any edge e not in G, γ(G+e)<γ(G). We will characterize all connected γ-edge critical cactus graphs.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.04.005
Jafari Rad, Nader 1 ; Jafari, Sayyed Heidar 1

1 Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
@article{CRMATH_2011__349_9-10_485_0,
     author = {Jafari Rad, Nader and Jafari, Sayyed Heidar},
     title = {Some notes on domination edge critical graphs},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {485--488},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.04.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.005/}
}
TY  - JOUR
AU  - Jafari Rad, Nader
AU  - Jafari, Sayyed Heidar
TI  - Some notes on domination edge critical graphs
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 485
EP  - 488
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.04.005/
DO  - 10.1016/j.crma.2011.04.005
LA  - en
ID  - CRMATH_2011__349_9-10_485_0
ER  - 
%0 Journal Article
%A Jafari Rad, Nader
%A Jafari, Sayyed Heidar
%T Some notes on domination edge critical graphs
%J Comptes Rendus. Mathématique
%D 2011
%P 485-488
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.04.005/
%R 10.1016/j.crma.2011.04.005
%G en
%F CRMATH_2011__349_9-10_485_0
Jafari Rad, Nader; Jafari, Sayyed Heidar. Some notes on domination edge critical graphs. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 485-488. doi : 10.1016/j.crma.2011.04.005. http://www.numdam.org/articles/10.1016/j.crma.2011.04.005/

[1] Ananchuen, N.; Plummer, M.D. Some results related to toughness of 3-domination critical graphs, Discrete Mathematics, Volume 272 (2003), pp. 5-15

[2] Ananchuen, N.; Plummer, M.D. Matching properties in domination critical graphs, Discrete Mathematics, Volume 277 (2004), pp. 1-13

[3] Favaron, O.; Sumner, D.P.; Wojcicka, E. The diameter of domination k-critical graphs, Journal of Graph Theory, Volume 18 (1994), pp. 723-734

[4] Fundamentals of Domination in Graphs (Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J., eds.), Marcel Dekker, Inc., New York, 1998

[5] Sumner, D.; Blitch, P. Domination critical graphs, Journal of Combinatorial Theory Ser. B, Volume 34 (1983), pp. 65-76

[6] Sumner, D.P. Critical concept in domination, Discrete Mathematics, Volume 86 (1990), pp. 33-46

Cité par Sources :