Mathematical Analysis/Harmonic Analysis
The Fourier–Stieltjes transform of Minkowskiʼs ?(x) function and an affirmative answer to Salemʼs problem
[La transforme de Fourier–Stieltjes de la fonction ?(x) de Minkowski et une réponse positive au probléme de Salem]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 633-636.

Grace à des propriétés structurelles et asymptotiques de la transformation de Kontorovich–Lebedev associé à la fonction point dʼinterrogation de Minkowski, on apporte une réponse positive à la question posée par R. Salem (Trans. Amer. Math. Soc. 53 (3) (1943) 439) : la transformée de Fourier–Stieltjes de la fonction point dʼinterrogation de Minkowski est-elle nulle à lʼinfini ?

By using structural and asymptotic properties of the Kontorovich–Lebedev transform associated with Minkowskiʼs question mark function, we give an affirmative answer to the question posed by R. Salem (Trans. Amer. Math. Soc. 53 (3) (1943) 439) whether its Fourier–Stieltjes transform vanishes at infinity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.04.004
Yakubovich, Semyon 1

1 Department of Mathematics, Faculty of Sciences, University of Porto, Campo Alegre st., 687, 4169-007 Porto, Portugal
@article{CRMATH_2011__349_11-12_633_0,
     author = {Yakubovich, Semyon},
     title = {The {Fourier{\textendash}Stieltjes} transform of {Minkowski's} $ ?(x)$ function and an affirmative answer to {Salem's} problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--636},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.04.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.004/}
}
TY  - JOUR
AU  - Yakubovich, Semyon
TI  - The Fourier–Stieltjes transform of Minkowskiʼs $ ?(x)$ function and an affirmative answer to Salemʼs problem
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 633
EP  - 636
VL  - 349
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.04.004/
DO  - 10.1016/j.crma.2011.04.004
LA  - en
ID  - CRMATH_2011__349_11-12_633_0
ER  - 
%0 Journal Article
%A Yakubovich, Semyon
%T The Fourier–Stieltjes transform of Minkowskiʼs $ ?(x)$ function and an affirmative answer to Salemʼs problem
%J Comptes Rendus. Mathématique
%D 2011
%P 633-636
%V 349
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.04.004/
%R 10.1016/j.crma.2011.04.004
%G en
%F CRMATH_2011__349_11-12_633_0
Yakubovich, Semyon. The Fourier–Stieltjes transform of Minkowskiʼs $ ?(x)$ function and an affirmative answer to Salemʼs problem. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 633-636. doi : 10.1016/j.crma.2011.04.004. http://www.numdam.org/articles/10.1016/j.crma.2011.04.004/

[1] Alkauskas, G. The moments of Minkowski question mark function: the dyadic period function, Glasg. Math. J., Volume 52 (2010) no. 1, pp. 41-64

[2] Denjoy, A. Sur une fonction réelle de Minkowski, J. Math. Pures Appl., Volume 17 (1938), pp. 105-151

[3] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions, vols. I and II, McGraw-Hill, 1953

[4] Ivas̃ev-Musatov, O.S. On Fourier–Stieltjes coefficients of singular functions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 20 (1956), pp. 179-196 (in Russian)

[5] Lebedev, N.N. Sur une formule dʼinversion, C.R. (Dokl.) Acad. Sci. URSS, Volume 52 (1946), pp. 655-658 (in French)

[6] McClure, J.P.; Wong, R. Explicit error terms for asymptotic expansions of Stieltjes transforms, J. Inst. Math. Appl., Volume 22 (1978), pp. 129-145

[7] Menchoff, D. Sur lʼinicité du développment trigonométrique, C. R. Acad. Sci. Paris, Volume 163 (1916), pp. 433-436

[8] Naylor, D. On an asymptotic expansion of the Kontorovich–Lebedev transform, Appl. Anal., Volume 39 (1990), pp. 249-263

[9] Olver, F.W.J. Error bounds for stationary phase approximations, SIAM J. Math. Anal., Volume 5 (1974), pp. 19-29

[10] Prudnikov, A.P.; Brychkov, Yu.A.; Marichev, O.I. Integrals and Series: vol. 2: Special Functions, Gordon and Breach, New York, 1986

[11] Salem, R. On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., Volume 53 (1943) no. 3, pp. 427-439

[12] Salem, R. On monotonic functions whose spectrum is a Cantor set with constant ratio of dissection, Proc. Nat. Acad. Sc. USA, Volume 41 (1955) no. 1, pp. 49-55

[13] R. Salem, Algebraic Numbers and Fourier Analysis, Heath Math. Monographs, Boston, 1963.

[14] Sneddon, I.N. The Use of Integral Transforms, McGray Hill, New York, 1972

[15] Wiener, N.; Wintner, A. Fourier–Stieltjes transforms and singular infinite convolutions, Amer. J. Math., Volume 60 (1938) no. 3, pp. 513-522

[16] Yakubovich, S.B. Index Transforms, World Scientific Publishing Company, Singapore, 1996

[17] Yakubovich, S. On a progress in the Kontorovich–Lebedev transform theory and related integral operators, Integral Transforms and Special Functions, Volume 19 (2008) no. 7, pp. 509-534

[18] Yakubovich, S.B.; Luchko, Yu.F. The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwer Ser. Math. and Appl., vol. 287, Kluwer, Dordrecht, Boston, London, 1994

Cité par Sources :