On construit un billard tridimensionnel réalisant tout entrelacs fini comme collection dʼorbites périodiques. Plus généralement, étant donné un patron, cʼest-à-dire une surface branchée munie dʼun semi-flot, on construit un billard dont la collection des orbites périodiques contient celle du patron. R. Ghrist a construit un tel patron contenant tous les entrelacs. On obtient le billard souhaité en appliquant notre construction à son exemple.
We construct a 3-dimensional billiard realizing all links as collections of isotopy classes of periodic orbits. For every branched surface supporting a semi-flow, we construct a 3d-billiard whose collections of periodic orbits contain those of the branched surface. R. Ghrist constructed a knot-holder containing any link as collection of periodic orbits. Applying our construction to his example provides the desired billiard.
Accepté le :
Publié le :
@article{CRMATH_2011__349_9-10_575_0, author = {Dehornoy, Pierre}, title = {A billiard containing all links}, journal = {Comptes Rendus. Math\'ematique}, pages = {575--578}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.003/} }
TY - JOUR AU - Dehornoy, Pierre TI - A billiard containing all links JO - Comptes Rendus. Mathématique PY - 2011 SP - 575 EP - 578 VL - 349 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.04.003/ DO - 10.1016/j.crma.2011.04.003 LA - en ID - CRMATH_2011__349_9-10_575_0 ER -
Dehornoy, Pierre. A billiard containing all links. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 575-578. doi : 10.1016/j.crma.2011.04.003. http://www.numdam.org/articles/10.1016/j.crma.2011.04.003/
[1] Branched two-manifolds supporting all links, Topology, Volume 36 (1997) no. 2, pp. 423-488
[2] Lissajous knots and billiard knots, Banach Center Publications, Volume 42 (1998), pp. 145-163
[3] Billiard knots in a cylinder, J. Knot Theory Ramifications, Volume 8 (1999) no. 3, pp. 353-366
[4] H. Morton, in: Problems in Knots in Hellas ʼ98, vol. 2, Proceedings of the International Conference on Knot Theory and its Ramifications held in Delphi, August 7–15, 1998, pp. 547–559.
[5] Tying knots with reflecting lightrays, 2010 http://mathoverflow.net/questions/38813/
[6] Billiards, Panoramas et Synthèses, vol. 1, Soc. Math. France, Paris, 1995 (vi+142 pp)
Cité par Sources :