Topology/Dynamical Systems
A billiard containing all links
[Un billard réalisant tout entrelacs]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 575-578.

On construit un billard tridimensionnel réalisant tout entrelacs fini comme collection dʼorbites périodiques. Plus généralement, étant donné un patron, cʼest-à-dire une surface branchée munie dʼun semi-flot, on construit un billard dont la collection des orbites périodiques contient celle du patron. R. Ghrist a construit un tel patron contenant tous les entrelacs. On obtient le billard souhaité en appliquant notre construction à son exemple.

We construct a 3-dimensional billiard realizing all links as collections of isotopy classes of periodic orbits. For every branched surface supporting a semi-flow, we construct a 3d-billiard whose collections of periodic orbits contain those of the branched surface. R. Ghrist constructed a knot-holder containing any link as collection of periodic orbits. Applying our construction to his example provides the desired billiard.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.04.003
Dehornoy, Pierre 1

1 UMPA, Ens de Lyon, 46, allée dʼItalie, 69364 Lyon, France
@article{CRMATH_2011__349_9-10_575_0,
     author = {Dehornoy, Pierre},
     title = {A billiard containing all links},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {575--578},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.04.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.003/}
}
TY  - JOUR
AU  - Dehornoy, Pierre
TI  - A billiard containing all links
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 575
EP  - 578
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.04.003/
DO  - 10.1016/j.crma.2011.04.003
LA  - en
ID  - CRMATH_2011__349_9-10_575_0
ER  - 
%0 Journal Article
%A Dehornoy, Pierre
%T A billiard containing all links
%J Comptes Rendus. Mathématique
%D 2011
%P 575-578
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.04.003/
%R 10.1016/j.crma.2011.04.003
%G en
%F CRMATH_2011__349_9-10_575_0
Dehornoy, Pierre. A billiard containing all links. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 575-578. doi : 10.1016/j.crma.2011.04.003. http://www.numdam.org/articles/10.1016/j.crma.2011.04.003/

[1] Ghrist, R.W. Branched two-manifolds supporting all links, Topology, Volume 36 (1997) no. 2, pp. 423-488

[2] Jones, V.F.R.; Przytycki, J.H. Lissajous knots and billiard knots, Banach Center Publications, Volume 42 (1998), pp. 145-163

[3] Lamm, C.; Obermeyer, D. Billiard knots in a cylinder, J. Knot Theory Ramifications, Volume 8 (1999) no. 3, pp. 353-366

[4] H. Morton, in: Problems in Knots in Hellas ʼ98, vol. 2, Proceedings of the International Conference on Knot Theory and its Ramifications held in Delphi, August 7–15, 1998, pp. 547–559.

[5] OʼRourke, J. Tying knots with reflecting lightrays, 2010 http://mathoverflow.net/questions/38813/

[6] Tabachnikov, S. Billiards, Panoramas et Synthèses, vol. 1, Soc. Math. France, Paris, 1995 (vi+142 pp)

Cité par Sources :