Cette Note a pour objet lʼexistence et les propriétés des solutions de type front progressif pour un système de réaction–diffusion non linéaire avec pertes à lʼintérieur du domaine. Nous montrons en particulier lʼexistence dʼun continuum de vitesses admissibles pour les fronts. Enfin, en considérant des pertes localisées près du bord, ces résultats sont comparés avec ceux déjà connus pour des pertes à la frontière du domaine.
This Note deals with the existence and qualitative properties of traveling wave solutions of a nonlinear reaction–diffusion system with losses inside the domain. In particular, we show the existence of a continuum of admissible speeds of traveling waves. Lastly, by considering losses concentrated near the boundary of the domain, these results are compared with those already known in the case of losses on the boundary.
Accepté le :
Publié le :
@article{CRMATH_2011__349_9-10_535_0, author = {Giletti, Thomas}, title = {Traveling waves for a reaction{\textendash}diffusion{\textendash}advection system with interior or boundary losses}, journal = {Comptes Rendus. Math\'ematique}, pages = {535--539}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.002/} }
TY - JOUR AU - Giletti, Thomas TI - Traveling waves for a reaction–diffusion–advection system with interior or boundary losses JO - Comptes Rendus. Mathématique PY - 2011 SP - 535 EP - 539 VL - 349 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.04.002/ DO - 10.1016/j.crma.2011.04.002 LA - en ID - CRMATH_2011__349_9-10_535_0 ER -
%0 Journal Article %A Giletti, Thomas %T Traveling waves for a reaction–diffusion–advection system with interior or boundary losses %J Comptes Rendus. Mathématique %D 2011 %P 535-539 %V 349 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.04.002/ %R 10.1016/j.crma.2011.04.002 %G en %F CRMATH_2011__349_9-10_535_0
Giletti, Thomas. Traveling waves for a reaction–diffusion–advection system with interior or boundary losses. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 535-539. doi : 10.1016/j.crma.2011.04.002. http://www.numdam.org/articles/10.1016/j.crma.2011.04.002/
[1] H. Berestycki, F. Hamel, Reaction–Diffusion Equations and Propagation Phenomena, Springer-Verlag, in press.
[2] Quenching and propagation in KPP reaction–diffusion equations with a heat loss, Arch. Ration. Mech. Anal., Volume 178 (2005), pp. 57-80
[3] Traveling wave in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 9 (1992), pp. 497-572
[4] KPP reaction–diffusion equations with a non-linear loss inside a cylinder, Nonlinearity, Volume 23 (2010), p. 2307
[5] T. Giletti, KPP reaction–diffusion system with loss inside a cylinder: convergence toward the problem with Robin boundary conditions, preprint.
[6] Non-adiabatic KPP fronts with an arbitrary Lewis number, Nonlinearity, Volume 18 (2005), pp. 2881-2902
[7] Mathematical Biology, Springer, 2003
[8] Analysis and modelling of front propagation in heterogeneous media, SIAM Rev., Volume 42 (2000), pp. 161-230
Cité par Sources :