[Une propriété dʼinvariance-suppression des mesures aléatoires vérifiant les identités de Ghirlanda–Guerra]
Nous montrons que si une mesure aléatoire discrète sur la boule unité dʼun espace de Hilbert séparable satisfait aux identités de Ghirlanda–Guerra, alors en suprimant aléatoirement la moitié des points et en renormalisant les poids des points restants, on obtient une mesure de même distribution à une rotation près.
We show that if a discrete random measure on the unit ball of a separable Hilbert space satisfies the Ghirlanda–Guerra identities then by randomly deleting half of the points and renormalizing the weights of the remaining points we obtain the same random measure in distribution up to rotations.
Accepté le :
Publié le :
@article{CRMATH_2011__349_9-10_579_0, author = {Panchenko, Dmitry}, title = {A deletion-invariance property for random measures satisfying the {Ghirlanda{\textendash}Guerra} identities}, journal = {Comptes Rendus. Math\'ematique}, pages = {579--581}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.04.001/} }
TY - JOUR AU - Panchenko, Dmitry TI - A deletion-invariance property for random measures satisfying the Ghirlanda–Guerra identities JO - Comptes Rendus. Mathématique PY - 2011 SP - 579 EP - 581 VL - 349 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.04.001/ DO - 10.1016/j.crma.2011.04.001 LA - en ID - CRMATH_2011__349_9-10_579_0 ER -
%0 Journal Article %A Panchenko, Dmitry %T A deletion-invariance property for random measures satisfying the Ghirlanda–Guerra identities %J Comptes Rendus. Mathématique %D 2011 %P 579-581 %V 349 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.04.001/ %R 10.1016/j.crma.2011.04.001 %G en %F CRMATH_2011__349_9-10_579_0
Panchenko, Dmitry. A deletion-invariance property for random measures satisfying the Ghirlanda–Guerra identities. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 579-581. doi : 10.1016/j.crma.2011.04.001. http://www.numdam.org/articles/10.1016/j.crma.2011.04.001/
[1] On the stability of the quenched state in mean-field spin-glass models, J. Stat. Phys., Volume 92 (1998) no. 5–6, pp. 765-783
[2] On the structure of quasi-stationary competing particles systems, Ann. Probab., Volume 37 (2009) no. 3, pp. 1080-1113
[3] General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A, Volume 31 (1998) no. 46, pp. 9149-9155
[4] A connection between Ghirlanda–Guerra identities and ultrametricity, Ann. Probab., Volume 38 (2010) no. 1, pp. 327-347
[5] On the Dovbysh–Sudakov representation result, Electron. Commun. Probab., Volume 15 (2010), pp. 330-338
[6] Construction of pure states in mean-field models for spin glasses, Probab. Theory Related Fields, Volume 148 (2010) no. 3–4, pp. 601-643
[7] Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models, Springer-Verlag, Berlin, 2003
[8] M. Talagrand, Mean-Field Models for Spin Glasses, second edition of [7], in press. First volume was published: http://www.springer.com/mathematics/probability/book/978-3-642-15201-6. Vol. 2 will appear in Ergebnisse Series, vol. 55.
Cité par Sources :