Partial Differential Equations/Mathematical Physics
Analytic solutions to a strongly nonlinear Vlasov equation
[Solutions analytiques à une équation de type Vlasov fortement non linéaire]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 541-546.

Nous démontrons lʼexistence en temps petit de solution analytique à une équation de type Vlasov. Le modèle considéré est mono-dimensionnel mais le terme de force correspondant fait intervenir une dérivée complète de la densité macroscopique. Ceci rend la question de lʼexistence de solution particulièrement délicate.

We prove the existence for short times of analytic solutions to a Vlasov type equation. The corresponding model is one-dimensional but uses a quite singular force term which involves a full derivative in x of the macroscopic density, making the existence of solutions a difficult question.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.024
Jabin, Pierre-Emmanuel 1 ; Nouri, A. 2

1 Laboratoire Dieudonné, University of Nice-Sophia Antipolis, parc Valrose, 06000 Nice, France
2 Aix-Marseille University, France
@article{CRMATH_2011__349_9-10_541_0,
     author = {Jabin, Pierre-Emmanuel and Nouri, A.},
     title = {Analytic solutions to a strongly nonlinear {Vlasov} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {541--546},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.024/}
}
TY  - JOUR
AU  - Jabin, Pierre-Emmanuel
AU  - Nouri, A.
TI  - Analytic solutions to a strongly nonlinear Vlasov equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 541
EP  - 546
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.03.024/
DO  - 10.1016/j.crma.2011.03.024
LA  - en
ID  - CRMATH_2011__349_9-10_541_0
ER  - 
%0 Journal Article
%A Jabin, Pierre-Emmanuel
%A Nouri, A.
%T Analytic solutions to a strongly nonlinear Vlasov equation
%J Comptes Rendus. Mathématique
%D 2011
%P 541-546
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.03.024/
%R 10.1016/j.crma.2011.03.024
%G en
%F CRMATH_2011__349_9-10_541_0
Jabin, Pierre-Emmanuel; Nouri, A. Analytic solutions to a strongly nonlinear Vlasov equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 541-546. doi : 10.1016/j.crma.2011.03.024. http://www.numdam.org/articles/10.1016/j.crma.2011.03.024/

[1] Bardos, C.; Degond, P. Global existence for the Vlasov–Poisson equation in 3-space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118

[2] Benachour, S. Analyticité des solutions des équations de Vlasov–Poisson, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 16 (1989) no. 1, pp. 83-104

[3] Besse, N.; Berthelin, F.; Brenier, Y.; Bertrand, P. The multi water-bag model for collisionless kinetic equations, Kinetic and Related Models, Volume 2 (2009) no. 1, pp. 39-80

[4] Bouchut, F.; Golse, F.; Pallard, C. Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 170 (2003) no. 1, pp. 1-15

[5] Di Perna, R.; Lions, P.L. Global weak solutions of Vlasov–Maxwell systems, Comm. Pure Appl. Math., Volume 42 (1989), pp. 729-757

[6] Ghendrih, P.; Hauray, M.; Nouri, A. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions, Kinetic and Related Models, Volume 2 (2009) no. 4, pp. 707-725

[7] Glassey, R.T. The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, PA, 1996

[8] Glassey, R.; Schaeffer, J. The relativistic Vlasov–Maxwell system in two space dimensions, I and II, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 331-354 (355–374)

[9] Lions, P.L.; Perthame, B. Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991), pp. 415-430

[10] C. Mouhot, C. Villani, On Landau damping, Acta Math., in press, preprint 2009, http://hal.archives-ouvertes.fr/ccsd-00376547.

[11] Pfaffelmoser, K. Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differential Equations, Volume 95 (1992), pp. 281-303

[12] Schaeffer, J. Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions, Comm. Partial Differential Equations, Volume 16 (1991), pp. 1313-1335

Cité par Sources :