Number Theory
On Zarembaʼs conjecture
[Sur une conjecture de Zaremba]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 493-495.

On montre quʼil existe une constante A et un sous-ensemble S des entiers positifs de densité un, tel que pour tout qS il y a un entier 1p<q,(p,q)=1 pour lequel les quotients partiels de pq sont bornés par A.

It is shown that there is a constant A and a density one subset S of the positive integers such that, for each qS, there is some 1p<q, (p,q)=1, so that pq has all its partial quotients bounded by A.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.023
Bourgain, Jean 1 ; Kontorovich, Alex 2

1 IAS, Princeton, NJ 08540, USA
2 Stony Brook University, Stony Brook, NY 11794, USA
@article{CRMATH_2011__349_9-10_493_0,
     author = {Bourgain, Jean and Kontorovich, Alex},
     title = {On {Zaremba's} conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {493--495},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.023/}
}
TY  - JOUR
AU  - Bourgain, Jean
AU  - Kontorovich, Alex
TI  - On Zarembaʼs conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 493
EP  - 495
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.03.023/
DO  - 10.1016/j.crma.2011.03.023
LA  - en
ID  - CRMATH_2011__349_9-10_493_0
ER  - 
%0 Journal Article
%A Bourgain, Jean
%A Kontorovich, Alex
%T On Zarembaʼs conjecture
%J Comptes Rendus. Mathématique
%D 2011
%P 493-495
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.03.023/
%R 10.1016/j.crma.2011.03.023
%G en
%F CRMATH_2011__349_9-10_493_0
Bourgain, Jean; Kontorovich, Alex. On Zarembaʼs conjecture. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 493-495. doi : 10.1016/j.crma.2011.03.023. http://www.numdam.org/articles/10.1016/j.crma.2011.03.023/

[1] Jean Bourgain, Alex Gamburd, Peter Sarnak, Generalization of Selbergʼs theorem and Selbergʼs sieve, 2009, preprint.

[2] Bourgain, J.; Kontorovich, A. On representations of integers in thin subgroups of SL(2,Z), GAFA, Volume 20 (2010) no. 5, pp. 1144-1174

[3] Bourgain, J.; Kontorovich, A.; Sarnak, P. Sector estimates for hyperbolic isometries, GAFA, Volume 20 (2010) no. 5, pp. 1175-1200

[4] Hensley, Doug The distribution of badly approximable numbers and continuants with bounded digits, Quebec, PQ, 1987, de Gruyter, Berlin (1989), pp. 371-385

[5] Hensley, Doug Continued fraction Cantor sets, Hausdorff dimension, and functional analysis, J. Number Theory, Volume 40 (1992) no. 3, pp. 336-358

[6] McMullen, Curtis T. Uniformly Diophantine numbers in a fixed real quadratic field, Compos. Math., Volume 145 (2009) no. 4, pp. 827-844

[7] Niederreiter, Harald Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc., Volume 84 (1978) no. 6, pp. 957-1041

[8] Niederreiter, Harald Dyadic fractions with small partial quotients, Monatsh. Math., Volume 101 (1986) no. 4, pp. 309-315

[9] Zaremba, S.K. La méthode des “bons treillis” pour le calcul des intégrales multiples, Univ. Montreal, Montreal, Que., 1971, Academic Press, New York (1972), pp. 39-119

Cité par Sources :