On montre quʼil existe une constante A et un sous-ensemble S des entiers positifs de densité un, tel que pour tout il y a un entier pour lequel les quotients partiels de sont bornés par A.
It is shown that there is a constant A and a density one subset S of the positive integers such that, for each , there is some , , so that has all its partial quotients bounded by A.
Accepté le :
Publié le :
@article{CRMATH_2011__349_9-10_493_0, author = {Bourgain, Jean and Kontorovich, Alex}, title = {On {Zaremba's} conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {493--495}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.03.023}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.023/} }
TY - JOUR AU - Bourgain, Jean AU - Kontorovich, Alex TI - On Zarembaʼs conjecture JO - Comptes Rendus. Mathématique PY - 2011 SP - 493 EP - 495 VL - 349 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.03.023/ DO - 10.1016/j.crma.2011.03.023 LA - en ID - CRMATH_2011__349_9-10_493_0 ER -
Bourgain, Jean; Kontorovich, Alex. On Zarembaʼs conjecture. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 493-495. doi : 10.1016/j.crma.2011.03.023. http://www.numdam.org/articles/10.1016/j.crma.2011.03.023/
[1] Jean Bourgain, Alex Gamburd, Peter Sarnak, Generalization of Selbergʼs theorem and Selbergʼs sieve, 2009, preprint.
[2] On representations of integers in thin subgroups of , GAFA, Volume 20 (2010) no. 5, pp. 1144-1174
[3] Sector estimates for hyperbolic isometries, GAFA, Volume 20 (2010) no. 5, pp. 1175-1200
[4] The distribution of badly approximable numbers and continuants with bounded digits, Quebec, PQ, 1987, de Gruyter, Berlin (1989), pp. 371-385
[5] Continued fraction Cantor sets, Hausdorff dimension, and functional analysis, J. Number Theory, Volume 40 (1992) no. 3, pp. 336-358
[6] Uniformly Diophantine numbers in a fixed real quadratic field, Compos. Math., Volume 145 (2009) no. 4, pp. 827-844
[7] Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc., Volume 84 (1978) no. 6, pp. 957-1041
[8] Dyadic fractions with small partial quotients, Monatsh. Math., Volume 101 (1986) no. 4, pp. 309-315
[9] La méthode des “bons treillis” pour le calcul des intégrales multiples, Univ. Montreal, Montreal, Que., 1971, Academic Press, New York (1972), pp. 39-119
Cité par Sources :