Partial Differential Equations/Numerical Analysis
Error estimates for three-dimensional Stokes problem with non-standard boundary conditions
[Erreurs dʼestimation pour le problème de Stokes en trois dimensions avec des conditions aux limites non standards]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 523-528.

Dans cette Note, nous établissons des estimations dʼerreur a posteriori pour le problème de Stokes avec certaines conditions aux limites non standards en dimension trois. La formulation variationnelle est découplée en un problème pour la vitesse et une équation de Poisson pour la pression. La vitesse est approchée par les éléments finis rot et la pression par les éléments continus standards. Nous établirons par la suite les estimations a posteriori optimales.

This work is devoted to the optimal and a posteriori error estimates of the Stokes problem with some non-standard boundary conditions in three dimensions. The variational formulation is decoupled into a system for the velocity and a Poisson equation for the pressure. The velocity is approximated with curl conforming finite elements and the pressure with standard continuous elements. Next, we establish optimal a posteriori estimates.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.021
Abboud, Hyam 1 ; El Chami, Fida 1 ; Sayah, Toni 2

1 Faculté des sciences II, Université Libanaise, département de mathématiques, B.P. 90656, Fanar-Maten, Lebanon
2 Faculté des sciences, Université Saint-Joseph, B.P. 11-514 Riad El Solh, Beyrouth 1107 2050, Lebanon
@article{CRMATH_2011__349_9-10_523_0,
     author = {Abboud, Hyam and El Chami, Fida and Sayah, Toni},
     title = {Error estimates for three-dimensional {Stokes} problem with non-standard boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {523--528},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.021/}
}
TY  - JOUR
AU  - Abboud, Hyam
AU  - El Chami, Fida
AU  - Sayah, Toni
TI  - Error estimates for three-dimensional Stokes problem with non-standard boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 523
EP  - 528
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.03.021/
DO  - 10.1016/j.crma.2011.03.021
LA  - en
ID  - CRMATH_2011__349_9-10_523_0
ER  - 
%0 Journal Article
%A Abboud, Hyam
%A El Chami, Fida
%A Sayah, Toni
%T Error estimates for three-dimensional Stokes problem with non-standard boundary conditions
%J Comptes Rendus. Mathématique
%D 2011
%P 523-528
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.03.021/
%R 10.1016/j.crma.2011.03.021
%G en
%F CRMATH_2011__349_9-10_523_0
Abboud, Hyam; El Chami, Fida; Sayah, Toni. Error estimates for three-dimensional Stokes problem with non-standard boundary conditions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 523-528. doi : 10.1016/j.crma.2011.03.021. http://www.numdam.org/articles/10.1016/j.crma.2011.03.021/

[1] H. Abboud, F. El Chami, T. Sayah, A priori and a posteriori estimates for three-dimensional Stokes equations with nonstandard of boundary conditions, Numerical Methods for Partial Differential Equations, . | DOI

[2] Ciarlet, Ph.G. Basic error estimates for elliptic problems, Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991

[3] Clément, P. Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numer., Volume 9 (1975), pp. 77-84

[4] Girault, V. Curl-conforming finite element methods for Navier–Stokes equations with non-standard boundary conditions in R3, The Navier–Stokes Equations. Theory and Numerical Methods, Lecture Notes, vol. 1431, Springer, 1990, pp. 201-218

[5] Nedelec, J.C. Mixed finite element in R3, Numer. Math., Volume 35 (1980), pp. 315-341

[6] Raviart, P.-A.; Thomas, J.-M. A mixed finite element method for second order elliptic problems, Mathematical Aspects of Finite Element Methods, Lect. Notes Math., vol. 606, Springer, Berlin, 1977, pp. 292-315

Cité par Sources :