Nous montrons que les entiers totalement positifs de normes suffisamment grandes sont des sommes de carrés distincts dans lʼanneau des entiers des corps réel quadratique.
We show that the elements of the ring of integers of real quadratic fields which are sums of integral squares are in fact sums of distinct squares, provided their norm is large enough.
Accepté le :
Publié le :
@article{CRMATH_2011__349_9-10_497_0, author = {Kim, Byeong Moon and Park, Poo-Sung}, title = {Sums of distinct integral squares in real quadratic fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {497--500}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.03.019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.019/} }
TY - JOUR AU - Kim, Byeong Moon AU - Park, Poo-Sung TI - Sums of distinct integral squares in real quadratic fields JO - Comptes Rendus. Mathématique PY - 2011 SP - 497 EP - 500 VL - 349 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.03.019/ DO - 10.1016/j.crma.2011.03.019 LA - en ID - CRMATH_2011__349_9-10_497_0 ER -
%0 Journal Article %A Kim, Byeong Moon %A Park, Poo-Sung %T Sums of distinct integral squares in real quadratic fields %J Comptes Rendus. Mathématique %D 2011 %P 497-500 %V 349 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.03.019/ %R 10.1016/j.crma.2011.03.019 %G en %F CRMATH_2011__349_9-10_497_0
Kim, Byeong Moon; Park, Poo-Sung. Sums of distinct integral squares in real quadratic fields. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 497-500. doi : 10.1016/j.crma.2011.03.019. http://www.numdam.org/articles/10.1016/j.crma.2011.03.019/
[1] Calculation of class numbers by decomposition into three integral squares in the field of and , Amer. J. Math., Volume 83 (1961), pp. 33-56
[2] Sums of four squares in a quadratic ring, Trans. Amer. Math. Soc., Volume 105 (1962), pp. 536-556
[3] Über eine zahlentheoretische Anwendung von Modulfunktionen zweier Veränderlicher, Math. Ann., Volume 100 (1928) no. 1, pp. 411-437
[4] J.Y. Kim, Y.M. Lee, Sums of distinct integral squares in , and , preprint.
[5] On the representation of a binary quadratic form as a sum of squares of linear forms, Math. Z., Volume 35 (1932) no. 1, pp. 1-15
[6] Sums of distinct integral squares in , C. R. Acad. Sci. Paris, Sér. I, Volume 346 (2008) no. 13–14, pp. 723-725
[7] R. Scharlau, Zur Darstellbarkeit von totalreellen ganzen algebraischen Zahlen durch Summen von Quadraten, Dissertation, Bielefeld, 1979.
[8] Über Zerlegungen in ungleiche Quadratzahlen, Math. Z., Volume 51 (1948), pp. 289-290
Cité par Sources :