Dans [17] Pollack (2003) a montré que la fonction L p-adique associée à une forme modulaire en une place très supersingulière p () est contrôlée par deux fonctions dʼIwasawa et deux semi-logarithmes. Nous énonc˛ons une généralisation conjecturale des résultats de Pollack aux fonctions L p-adiques des motifs. Nous donnons divers exemples (produits symétriques et produits tensoriels de formes modulaires) qui confirment cette conjecture.
Pollack (2003) [17] proved that the p-adic L-function attached to a modular form at the most supersingular prime p (i.e. ) is controlled by two Iwasawa functions and by two half-logarithms. We formulate a (conjectural) generalization of this result to p-adic L-functions attached to motives, and give examples confirming our expectation (symmetric powers and tensor products of modular forms).
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_365_0, author = {D\k{a}browski, Andrzej}, title = {Bounded \protect\emph{p}-adic {\protect\emph{L}-functions} of motives at supersingular primes}, journal = {Comptes Rendus. Math\'ematique}, pages = {365--368}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.03.015}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.015/} }
TY - JOUR AU - Dąbrowski, Andrzej TI - Bounded p-adic L-functions of motives at supersingular primes JO - Comptes Rendus. Mathématique PY - 2011 SP - 365 EP - 368 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.03.015/ DO - 10.1016/j.crma.2011.03.015 LA - en ID - CRMATH_2011__349_7-8_365_0 ER -
%0 Journal Article %A Dąbrowski, Andrzej %T Bounded p-adic L-functions of motives at supersingular primes %J Comptes Rendus. Mathématique %D 2011 %P 365-368 %V 349 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.03.015/ %R 10.1016/j.crma.2011.03.015 %G en %F CRMATH_2011__349_7-8_365_0
Dąbrowski, Andrzej. Bounded p-adic L-functions of motives at supersingular primes. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 365-368. doi : 10.1016/j.crma.2011.03.015. http://www.numdam.org/articles/10.1016/j.crma.2011.03.015/
[1] Distributions p-adiques associées aux séries de Hecke, Astérisque, Volume 24–25 (1975), pp. 119-131
[2] Admissible p-adic measures attached to triple products of elliptic cusp forms, Doc. Math., Volume Extra Vol. (2006), pp. 77-132
[3] On p-adic L-functions, Astérisque, Volume 701 (1987–1988), pp. 33-59
[4] On p-adic L-functions attached to motives over , Adv. Stud. Pure Math., Volume 17 (1989), pp. 23-54
[5] p-Adic L-functions of Hilbert modular forms, Ann. Inst. Fourier, Volume 44 (1994), pp. 1025-1041
[6] S-adic L-functions attached to the symmetric square of a newform, Proc. London Math. Soc., Volume 74 (1997), pp. 559-611
[7] Admissible p-adic L-functions of automorphic forms, Moscow Univ. Math. Bull., Volume 48 (1993) no. 2, pp. 6-10
[8] Valeurs de fonctions L et périodes dʼintégrales, Proc. Symp. Pure Math., Volume 33 (1979) no. 2, pp. 313-346
[9] The existence of infinitely many supersingular primes for every elliptic curve over , Invent. Math., Volume 89 (1987), pp. 561-567
[10] Wach modules and Iwasawa theory of modular forms, Asian J. Math., Volume 14 (2010), pp. 475-528
[11] On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., Volume 84 (1986), pp. 1-48
[12] Convolutions p-adiques non-bornées de formes modulaires de Hilbert, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 1121-1124
[13] Admissible non-archimedean standard zeta functions associated with Siegel modular forms, Proc. Symp. Pure Math., Volume 55 (1994) no. 2, pp. 251-292
[14] Motives over totally real fields and p-adic L-functions, Ann. Inst. Fourier, Volume 44 (1994), pp. 989-1023
[15] J. Park, S. Shahabi, Plus/minus p-adic L-functions for Hilbert modular forms, preprint, 2009.
[16] Fonctions L p-adiques des représentations p-adiques, Astérisque, Volume 229 (1995) (198 pp)
[17] On the p-adic L-functions of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003), pp. 523-558
[18] Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.), Volume 99 (1976) no. 141, pp. 248-260
[19] On the p-adic L-function of Hilbert modular forms at supersingular primes, J. Number Theory, Volume 131 (2011), pp. 419-439
Cité par Sources :