Number Theory
Bounded p-adic L-functions of motives at supersingular primes
[Fonctions L p-adiques bornées des motifs en une place très supersingulière]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 365-368.

Dans [17] Pollack (2003) a montré que la fonction L p-adique associée à une forme modulaire f=anqn en une place très supersingulière p (ap=0) est contrôlée par deux fonctions dʼIwasawa et deux semi-logarithmes. Nous énonc˛ons une généralisation conjecturale des résultats de Pollack aux fonctions L p-adiques des motifs. Nous donnons divers exemples (produits symétriques et produits tensoriels de formes modulaires) qui confirment cette conjecture.

Pollack (2003) [17] proved that the p-adic L-function attached to a modular form f=anqn at the most supersingular prime p (i.e. ap=0) is controlled by two Iwasawa functions and by two half-logarithms. We formulate a (conjectural) generalization of this result to p-adic L-functions attached to motives, and give examples confirming our expectation (symmetric powers and tensor products of modular forms).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.015
Dąbrowski, Andrzej 1

1 Institute of Mathematics, University of Szczecin, ul. Wielkopolska 15, 70-451 Szczecin, Poland
@article{CRMATH_2011__349_7-8_365_0,
     author = {D\k{a}browski, Andrzej},
     title = {Bounded \protect\emph{p}-adic {\protect\emph{L}-functions} of motives at supersingular primes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {365--368},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.015/}
}
TY  - JOUR
AU  - Dąbrowski, Andrzej
TI  - Bounded p-adic L-functions of motives at supersingular primes
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 365
EP  - 368
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.03.015/
DO  - 10.1016/j.crma.2011.03.015
LA  - en
ID  - CRMATH_2011__349_7-8_365_0
ER  - 
%0 Journal Article
%A Dąbrowski, Andrzej
%T Bounded p-adic L-functions of motives at supersingular primes
%J Comptes Rendus. Mathématique
%D 2011
%P 365-368
%V 349
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.03.015/
%R 10.1016/j.crma.2011.03.015
%G en
%F CRMATH_2011__349_7-8_365_0
Dąbrowski, Andrzej. Bounded p-adic L-functions of motives at supersingular primes. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 365-368. doi : 10.1016/j.crma.2011.03.015. http://www.numdam.org/articles/10.1016/j.crma.2011.03.015/

[1] Amice, Y.; Vélu, J. Distributions p-adiques associées aux séries de Hecke, Astérisque, Volume 24–25 (1975), pp. 119-131

[2] Böcherer, S.; Panchishkin, A.A. Admissible p-adic measures attached to triple products of elliptic cusp forms, Doc. Math., Volume Extra Vol. (2006), pp. 77-132

[3] Coates, J. On p-adic L-functions, Astérisque, Volume 701 (1987–1988), pp. 33-59

[4] Coates, J.; Perrin-Riou, B. On p-adic L-functions attached to motives over Q, Adv. Stud. Pure Math., Volume 17 (1989), pp. 23-54

[5] Dąbrowski, A. p-Adic L-functions of Hilbert modular forms, Ann. Inst. Fourier, Volume 44 (1994), pp. 1025-1041

[6] Dąbrowski, A.; Delbourgo, D. S-adic L-functions attached to the symmetric square of a newform, Proc. London Math. Soc., Volume 74 (1997), pp. 559-611

[7] Dombrowski (Dąbrowski), A. Admissible p-adic L-functions of automorphic forms, Moscow Univ. Math. Bull., Volume 48 (1993) no. 2, pp. 6-10

[8] Deligne, P. Valeurs de fonctions L et périodes dʼintégrales, Proc. Symp. Pure Math., Volume 33 (1979) no. 2, pp. 313-346

[9] Elkies, N. The existence of infinitely many supersingular primes for every elliptic curve over Q, Invent. Math., Volume 89 (1987), pp. 561-567

[10] Lei, A.; Loeffler, D.; Zerbes, S. Wach modules and Iwasawa theory of modular forms, Asian J. Math., Volume 14 (2010), pp. 475-528

[11] Mazur, B.; Tate, J.; Teitelbaum, J. On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., Volume 84 (1986), pp. 1-48

[12] Vihn Quang, My Convolutions p-adiques non-bornées de formes modulaires de Hilbert, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 1121-1124

[13] Panchishkin, A.A. Admissible non-archimedean standard zeta functions associated with Siegel modular forms, Proc. Symp. Pure Math., Volume 55 (1994) no. 2, pp. 251-292

[14] Panchishkin, A.A. Motives over totally real fields and p-adic L-functions, Ann. Inst. Fourier, Volume 44 (1994), pp. 989-1023

[15] J. Park, S. Shahabi, Plus/minus p-adic L-functions for Hilbert modular forms, preprint, 2009.

[16] Perrin-Riou, B. Fonctions L p-adiques des représentations p-adiques, Astérisque, Volume 229 (1995) (198 pp)

[17] Pollack, R. On the p-adic L-functions of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003), pp. 523-558

[18] Vishik, M.M. Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.), Volume 99 (1976) no. 141, pp. 248-260

[19] Zhang, B. On the p-adic L-function of Hilbert modular forms at supersingular primes, J. Number Theory, Volume 131 (2011), pp. 419-439

Cité par Sources :