Soit p un nombre premier. Pour toutes nombres entiers , on note la classe des algèbres simples centrales de degré et dʼexposant au plus . Pour tous , nous trouvons une borne inférieure pour la p-dimension essentielle de . De plus, nous calculons une borne supérieure pour sur un corps de caractéristique 2. En conséquence, on montre que et sur un corps de caractéristique 2.
Let p be a prime integer. For any integers , denotes the class of central simple algebras of degree and exponent dividing . For any , we find a lower bound for the essential p-dimension of . Furthermore, we compute an upper bound for over a field of characteristic 2. As a result, we show and over a field of characteristic 2.
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_375_0, author = {Baek, Sanghoon}, title = {Essential dimension of simple algebras in positive characteristic}, journal = {Comptes Rendus. Math\'ematique}, pages = {375--378}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.03.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.014/} }
TY - JOUR AU - Baek, Sanghoon TI - Essential dimension of simple algebras in positive characteristic JO - Comptes Rendus. Mathématique PY - 2011 SP - 375 EP - 378 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.03.014/ DO - 10.1016/j.crma.2011.03.014 LA - en ID - CRMATH_2011__349_7-8_375_0 ER -
%0 Journal Article %A Baek, Sanghoon %T Essential dimension of simple algebras in positive characteristic %J Comptes Rendus. Mathématique %D 2011 %P 375-378 %V 349 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.03.014/ %R 10.1016/j.crma.2011.03.014 %G en %F CRMATH_2011__349_7-8_375_0
Baek, Sanghoon. Essential dimension of simple algebras in positive characteristic. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 375-378. doi : 10.1016/j.crma.2011.03.014. http://www.numdam.org/articles/10.1016/j.crma.2011.03.014/
[1] S. Baek, Essential dimension of simple algebras with involutions, preprint, . | arXiv
[2] Invariants of simple algebras, Manuscripta Math., Volume 129 (2009) no. 4, pp. 409-421
[3] S. Baek, A. Merkurjev, Essential dimension of central simple algebras, Acta Math., in press.
[4] Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math., Volume 8 (2003), pp. 279-330
[5] The period-index problem for the Brauer group of an algebraic surface, Duke Math. J., Volume 123 (2004), pp. 71-94
[6] Cohomological Invariants in Galois Cohomology, American Mathematical Society, Providence, RI, 2003
[7] Noncommutative Rings, Mathematical Association of America, Washington, DC, 1994
[8] Note on quaternion algebras over a commutative ring, Osaka J. Math., Volume 13 (1976) no. 3, pp. 503-512
[9] Twisted sheaves and the period-index problem, Compos. Math., Volume 144 (2008) no. 1, pp. 1-31
[10] Essential dimension, Quadratic Forms—Algebra, Arithmetic, and Geometry, Contemp. Math., vol. 493, American Mathematical Society, Providence, RI, 2009, pp. 299-325
[11] Essential p-dimension of , J. Amer. Math. Soc., Volume 23 (2010), pp. 693-712
[12] Associative Algebras, Springer-Verlag, New York, 1982
[13] On the notion of essential dimension for algebraic groups, Transform. Groups, Volume 5 (2000) no. 3, pp. 265-304
[14] Essential p-dimension of , J. Algebra, Volume 328 (2011) no. 1, pp. 488-494
[15] Division algebras of exponent 2 and characteristic 2, J. Algebra, Volume 90 (1984) no. 1, pp. 71-83
[16] Lectures on Division Algebras, American Mathematical Society, Providence, RI, 1999
[17] Sur les classes de similitude de corps à involution de degré 8, C. R. Acad. Sci. Paris Sér. A–B, Volume 286 (1978) no. 20, p. A875-A876
Cité par Sources :