Nous présentons de nouvelles propriétés structurelles de fonctions convexes de rang 1 et 1-homogènes, ainsi que certaines conséquences.
We announce new structural properties of 1-homogeneous rank-1 convex integrands, and discuss some of their consequences.
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_407_0, author = {Kirchheim, Bernd and Kristensen, Jan}, title = {Automatic convexity of rank-1 convex functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {407--409}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.03.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.013/} }
TY - JOUR AU - Kirchheim, Bernd AU - Kristensen, Jan TI - Automatic convexity of rank-1 convex functions JO - Comptes Rendus. Mathématique PY - 2011 SP - 407 EP - 409 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.03.013/ DO - 10.1016/j.crma.2011.03.013 LA - en ID - CRMATH_2011__349_7-8_407_0 ER -
%0 Journal Article %A Kirchheim, Bernd %A Kristensen, Jan %T Automatic convexity of rank-1 convex functions %J Comptes Rendus. Mathématique %D 2011 %P 407-409 %V 349 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.03.013/ %R 10.1016/j.crma.2011.03.013 %G en %F CRMATH_2011__349_7-8_407_0
Kirchheim, Bernd; Kristensen, Jan. Automatic convexity of rank-1 convex functions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 407-409. doi : 10.1016/j.crma.2011.03.013. http://www.numdam.org/articles/10.1016/j.crma.2011.03.013/
[1] Rank one property for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, Volume 123 (1993) no. 2, pp. 239-274
[2] Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations, Volume 11 (2000), pp. 333-359
[3] On the equation and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426
[4] New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. (JEMS), Volume 9 (2007) no. 2, pp. 277-315
[5] A new approach to counterexamples to estimates: Kornʼs inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., Volume 175 (2005) no. 2, pp. 287-300
[6] Rank-one convex functions on symmetric matrices and laminates on rank-three lines, Calc. Var. Partial Differential Equations, Volume 24 (2005) no. 4, pp. 479-493
[7] Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, 1989
[8] The role of perspective functions in convexity, polyconvexity, rank-one convexity and separate convexity, J. Convex Anal., Volume 15 (2008) no. 2, pp. 271-284
[9] Nonlinear Cauchy–Riemann operators in , Trans. Amer. Math. Soc., Volume 354 (2002), pp. 1961-1995
[10] Rigidity and Geometry of Microstructures, Lecture Notes, vol. 16, MPI Mathematics in the Sciences, Leipzig, 2003
[11] B. Kirchheim, J. Kristensen, On rank one convex functions that are homogeneous of degree one, in preparation.
[12] Characterization of generalized gradient Young measures generated by sequences in and BV, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 539-598
[13] On functional separately convex hulls, Discrete Comput. Geom., Volume 19 (1998), pp. 105-130
[14] Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal., Volume 8 (1998) no. 2, pp. 304-314
[15] Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., Volume 2 (1952), pp. 25-53
[16] On quasiconvex functions which are homogeneous of degree 1, Indiana Univ. Math. J., Volume 41 (1992), pp. 295-301
[17] A non-inequality for differential operators in the -norm, Arch. Ration. Mech. Anal., Volume 11 (1962), pp. 40-49
[18] Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (1992) no. 1–2, pp. 185-189
Cité par Sources :
☆ Work supported by EPSRC Science and Innovation Award EP/E035027/1.