Partial Differential Equations/Calculus of Variations
Automatic convexity of rank-1 convex functions
[Convexité automatique de fonctions convexes de rang 1]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 407-409.

Nous présentons de nouvelles propriétés structurelles de fonctions convexes de rang 1 et 1-homogènes, ainsi que certaines conséquences.

We announce new structural properties of 1-homogeneous rank-1 convex integrands, and discuss some of their consequences.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.013
Kirchheim, Bernd 1 ; Kristensen, Jan 1

1 Mathematical Institute, University of Oxford, 24–29 St. Gilesʼ, Oxford OX1 3LB, UK
@article{CRMATH_2011__349_7-8_407_0,
     author = {Kirchheim, Bernd and Kristensen, Jan},
     title = {Automatic convexity of rank-1 convex functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {407--409},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.013/}
}
TY  - JOUR
AU  - Kirchheim, Bernd
AU  - Kristensen, Jan
TI  - Automatic convexity of rank-1 convex functions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 407
EP  - 409
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.03.013/
DO  - 10.1016/j.crma.2011.03.013
LA  - en
ID  - CRMATH_2011__349_7-8_407_0
ER  - 
%0 Journal Article
%A Kirchheim, Bernd
%A Kristensen, Jan
%T Automatic convexity of rank-1 convex functions
%J Comptes Rendus. Mathématique
%D 2011
%P 407-409
%V 349
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.03.013/
%R 10.1016/j.crma.2011.03.013
%G en
%F CRMATH_2011__349_7-8_407_0
Kirchheim, Bernd; Kristensen, Jan. Automatic convexity of rank-1 convex functions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 407-409. doi : 10.1016/j.crma.2011.03.013. http://www.numdam.org/articles/10.1016/j.crma.2011.03.013/

[1] Alberti, G. Rank one property for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, Volume 123 (1993) no. 2, pp. 239-274

[2] Ball, J.M.; Kirchheim, B.; Kristensen, J. Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations, Volume 11 (2000), pp. 333-359

[3] Bourgain, J.; Brezis, H. On the equation divY=f and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426

[4] Bourgain, J.; Brezis, H. New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. (JEMS), Volume 9 (2007) no. 2, pp. 277-315

[5] Conti, S.; Faraco, D.; Maggi, F. A new approach to counterexamples to L1 estimates: Kornʼs inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., Volume 175 (2005) no. 2, pp. 287-300

[6] Conti, S.; Faraco, D.; Maggi, F.; Müller, S. Rank-one convex functions on 2×2 symmetric matrices and laminates on rank-three lines, Calc. Var. Partial Differential Equations, Volume 24 (2005) no. 4, pp. 479-493

[7] Dacorogna, B. Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, 1989

[8] Dacorogna, B.; Maréchal, P. The role of perspective functions in convexity, polyconvexity, rank-one convexity and separate convexity, J. Convex Anal., Volume 15 (2008) no. 2, pp. 271-284

[9] Iwaniec, T. Nonlinear Cauchy–Riemann operators in Rn, Trans. Amer. Math. Soc., Volume 354 (2002), pp. 1961-1995

[10] Kirchheim, B. Rigidity and Geometry of Microstructures, Lecture Notes, vol. 16, MPI Mathematics in the Sciences, Leipzig, 2003

[11] B. Kirchheim, J. Kristensen, On rank one convex functions that are homogeneous of degree one, in preparation.

[12] Kristensen, J.; Rindler, F. Characterization of generalized gradient Young measures generated by sequences in W1,1 and BV, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 539-598

[13] Matoušek, J.; Plecháč, P. On functional separately convex hulls, Discrete Comput. Geom., Volume 19 (1998), pp. 105-130

[14] McMullen, C.T. Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal., Volume 8 (1998) no. 2, pp. 304-314

[15] Morrey, C.B. Jr. Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., Volume 2 (1952), pp. 25-53

[16] Müller, S. On quasiconvex functions which are homogeneous of degree 1, Indiana Univ. Math. J., Volume 41 (1992), pp. 295-301

[17] Ornstein, D. A non-inequality for differential operators in the L1-norm, Arch. Ration. Mech. Anal., Volume 11 (1962), pp. 40-49

[18] Šverák, V. Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (1992) no. 1–2, pp. 185-189

Cité par Sources :

Work supported by EPSRC Science and Innovation Award EP/E035027/1.