Dans cette Note, nous donnons une preuve originale du théorème de comparaison pour les EDSR multidimensionnelles browniennes dans le cas où chaque ligne k du générateur ne dépend que de la k-ième ligne de lʼinconnue Z.
In this Note, we provide an original proof of the comparison theorem for multidimensional Brownian BSDEs in the case where at each line k the generator depends on the matrix variable Z only through its row k.
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_463_0, author = {Kharroubi, Idris}, title = {Comparison theorem for {Brownian} multidimensional {BSDEs} via jump processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {463--468}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.03.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.012/} }
TY - JOUR AU - Kharroubi, Idris TI - Comparison theorem for Brownian multidimensional BSDEs via jump processes JO - Comptes Rendus. Mathématique PY - 2011 SP - 463 EP - 468 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.03.012/ DO - 10.1016/j.crma.2011.03.012 LA - en ID - CRMATH_2011__349_7-8_463_0 ER -
%0 Journal Article %A Kharroubi, Idris %T Comparison theorem for Brownian multidimensional BSDEs via jump processes %J Comptes Rendus. Mathématique %D 2011 %P 463-468 %V 349 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.03.012/ %R 10.1016/j.crma.2011.03.012 %G en %F CRMATH_2011__349_7-8_463_0
Kharroubi, Idris. Comparison theorem for Brownian multidimensional BSDEs via jump processes. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 463-468. doi : 10.1016/j.crma.2011.03.012. http://www.numdam.org/articles/10.1016/j.crma.2011.03.012/
[1] Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, Volume 116 (2000), pp. 485-504
[2] On the comparison theorem for multidimensional BSDE, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 135-140
[3] A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation, Stochastics Stochastics Rep., Volume 38 (1992), pp. 119-134
[4] Backward stochastic differential equations with jumps and related non-linear expectation, Stochastic Proc. and their Appl., Volume 116 (2006), pp. 1358-1376
Cité par Sources :