Partial Differential Equations
Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
[Une onde progressive peut-elle connecter deux équilibres instables ? Le cas de lʼéquation de Fisher non-locale]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 553-557.

Nous étudions dans cette Note les propriétés des solutions de type ondes progressives pour lʼéquation de Fisher non-locale. Lʼexistence de telles solutions a été prouvée récemment dans Berestycki et al. (2009) [3] mais leur comportement asymptotique était encore mal compris. Nous développons ici une nouvelle méthode dʼapproximation numérique montrant que certaines ondes progressives connectent les deux états dʼéquilibre homogènes 0 et 1, ce qui est surprenant puisque 0 est dynamiquement instable et 1 est instable au sens de Turing.

This Note investigates the properties of the traveling waves solutions of the nonlocal Fisher equation. The existence of such solutions has been proved recently in Berestycki et al. (2009) [3] but their asymptotic behavior was still unclear. We use here a new numerical approximation of these traveling waves which shows that some traveling waves connect the two homogeneous steady states 0 and 1, which is a striking fact since 0 is dynamically unstable and 1 is unstable in the sense of Turing.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.008
Nadin, Grégoire 1 ; Perthame, Benoît 1, 2 ; Tang, Min 1, 2

1 UPMC, CNRS UMR 7598, laboratoire Jacques-Louis-Lions, 4, place Jussieu, 75005 Paris, France
2 INRIA Paris-Rocquencourt, équipe BANG, domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay, France
@article{CRMATH_2011__349_9-10_553_0,
     author = {Nadin, Gr\'egoire and Perthame, Beno{\^\i}t and Tang, Min},
     title = {Can a traveling wave connect two unstable states? {The} case of the nonlocal {Fisher} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {553--557},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.008/}
}
TY  - JOUR
AU  - Nadin, Grégoire
AU  - Perthame, Benoît
AU  - Tang, Min
TI  - Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 553
EP  - 557
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.03.008/
DO  - 10.1016/j.crma.2011.03.008
LA  - en
ID  - CRMATH_2011__349_9-10_553_0
ER  - 
%0 Journal Article
%A Nadin, Grégoire
%A Perthame, Benoît
%A Tang, Min
%T Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation
%J Comptes Rendus. Mathématique
%D 2011
%P 553-557
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.03.008/
%R 10.1016/j.crma.2011.03.008
%G en
%F CRMATH_2011__349_9-10_553_0
Nadin, Grégoire; Perthame, Benoît; Tang, Min. Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 553-557. doi : 10.1016/j.crma.2011.03.008. http://www.numdam.org/articles/10.1016/j.crma.2011.03.008/

[1] Apreutesei, N.; Bessonov, N.; Volpert, V.; Vougalter, V. Spatial structures and generalized travelling waves for an integro-differential equation, Discrete Contin. Dynam. Systems: Ser. B, Volume 13 (2010) no. 3, pp. 537-557

[2] Berestycki, H.; Hamel, F. Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002), pp. 949-1032

[3] Berestycki, H.; Nadin, G.; Perthame, B.; Ryzhik, L. The non-local Fisher–KPP equation: traveling waves and steady states, Nonlinearity, Volume 22 (2009), pp. 2813-2844

[4] Genieys, S.; Volpert, V.; Auger, P. Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Modelling Nat. Phenom., Volume 1 (2006), pp. 65-82

[5] Gourley, S.A. Travelling front solutions of a nonlocal Fisher equation (3), J. Math. Biol., Volume 41 (2000) no. 3

[6] Kolmogorov, A.N.; Petrovsky, I.G.; Piskunov, N.S. Etude de lʼéquation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université dʼEtat à Moscou (1937), pp. 1-26

[7] Shigesada, N.; Kawasaki, K.; Teramoto, E. Traveling periodic waves in heterogeneous environments, Theor. Population Biol., Volume 30 (1986), pp. 143-160

Cité par Sources :