[Restrictions absolument continues dʼune mesure de Dirac et zéros non triviaux de la fonction zêta de Riemann]
Nous montrons que la mesure de Dirac définie sur lʼespace de Banach de fonctions continues à valeurs complexes définies sur lʼintervalle , possède une restriction absolument continue sur un sous-espace de dimension infinie R de , cʼest-à-dire
It is shown that the Dirac measure defined on the Banach space of complex valued continuous functions defined on the interval , has an absolutely continuous restriction to an infinite dimensional subspace R of , that is
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_357_0, author = {Alc\'antara-Bode, Julio}, title = {Absolutely continuous restrictions of a {Dirac} measure and non-trivial zeros of the {Riemann} zeta function}, journal = {Comptes Rendus. Math\'ematique}, pages = {357--359}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.03.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.002/} }
TY - JOUR AU - Alcántara-Bode, Julio TI - Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function JO - Comptes Rendus. Mathématique PY - 2011 SP - 357 EP - 359 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.03.002/ DO - 10.1016/j.crma.2011.03.002 LA - en ID - CRMATH_2011__349_7-8_357_0 ER -
%0 Journal Article %A Alcántara-Bode, Julio %T Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function %J Comptes Rendus. Mathématique %D 2011 %P 357-359 %V 349 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.03.002/ %R 10.1016/j.crma.2011.03.002 %G en %F CRMATH_2011__349_7-8_357_0
Alcántara-Bode, Julio. Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 357-359. doi : 10.1016/j.crma.2011.03.002. http://www.numdam.org/articles/10.1016/j.crma.2011.03.002/
[1] An integral equation formulation of the Riemann hypothesis, Integral Equations Operator Theory, Volume 17 (1993) no. 2, pp. 151-168
[2] An algorithm for the evaluation of certain Fredholm determinants, Integral Equations Operator Theory, Volume 39 (2001) no. 2, pp. 153-158
[3] Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1976
[4] A closure problem related to the Riemann zeta-function, Proc. Natl. Acad. Sci. USA, Volume 41 (1955), pp. 312-314
[5] The “full Müntz theorem” revisited, Constr. Approx., Volume 21 (2005) no. 3, pp. 319-335
[6] Introduction to Real Functions and Orthogonal Expansions, Oxford University Press, New York, 1965
[7] Trigonometric Series, vols. I, II, Cambridge University Press, London, 1968
Cité par Sources :