Number Theory/Functional Analysis
Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function
[Restrictions absolument continues dʼune mesure de Dirac et zéros non triviaux de la fonction zêta de Riemann]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 357-359.

Nous montrons que la mesure de Dirac δ(f)=f(1) définie sur lʼespace de Banach C([0,1]) de fonctions continues à valeurs complexes définies sur lʼintervalle [0,1], possède une restriction absolument continue sur un sous-espace de dimension infinie R de C([0,1]), cʼest-à-dire

f(1)=01l(x)f(x)dx,fR.
Chaque zéro non trivial de la fonction zêta de Riemann détermine une densité de Radon–Nikodym différente lL1([0,1]). Lʼhypothèse de Riemann est vérifiée si et seulement si aucune de ces densités appartient à L2([0,1]), ou si et seulement si R est dense dans lʼespace L2([0,1]).

It is shown that the Dirac measure δ(f)=f(1) defined on the Banach space C([0,1]) of complex valued continuous functions defined on the interval [0,1], has an absolutely continuous restriction to an infinite dimensional subspace R of C([0,1]), that is

f(1)=01l(x)f(x)dx,fR.
Each non-trivial zero of the Riemann zeta function determines a different Radon–Nikodym density lL1([0,1]). The Riemann Hypothesis holds if and only if none of these densities belongs to L2([0,1]) or if and only if R is dense in L2([0,1]).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.002
Alcántara-Bode, Julio 1

1 Pontificia Universidad Católica del Perú and Instituto de Matemática y Ciencias Afines, Lima, Peru
@article{CRMATH_2011__349_7-8_357_0,
     author = {Alc\'antara-Bode, Julio},
     title = {Absolutely continuous restrictions of a {Dirac} measure and non-trivial zeros of the {Riemann} zeta function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {357--359},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.002/}
}
TY  - JOUR
AU  - Alcántara-Bode, Julio
TI  - Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 357
EP  - 359
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.03.002/
DO  - 10.1016/j.crma.2011.03.002
LA  - en
ID  - CRMATH_2011__349_7-8_357_0
ER  - 
%0 Journal Article
%A Alcántara-Bode, Julio
%T Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function
%J Comptes Rendus. Mathématique
%D 2011
%P 357-359
%V 349
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.03.002/
%R 10.1016/j.crma.2011.03.002
%G en
%F CRMATH_2011__349_7-8_357_0
Alcántara-Bode, Julio. Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 357-359. doi : 10.1016/j.crma.2011.03.002. http://www.numdam.org/articles/10.1016/j.crma.2011.03.002/

[1] Alcántara-Bode, J. An integral equation formulation of the Riemann hypothesis, Integral Equations Operator Theory, Volume 17 (1993) no. 2, pp. 151-168

[2] Alcántara-Bode, J. An algorithm for the evaluation of certain Fredholm determinants, Integral Equations Operator Theory, Volume 39 (2001) no. 2, pp. 153-158

[3] Apostol, T.M. Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1976

[4] Beurling, A. A closure problem related to the Riemann zeta-function, Proc. Natl. Acad. Sci. USA, Volume 41 (1955), pp. 312-314

[5] Erdélyi, T. The “full Müntz theorem” revisited, Constr. Approx., Volume 21 (2005) no. 3, pp. 319-335

[6] Sz.-Nagy, B. Introduction to Real Functions and Orthogonal Expansions, Oxford University Press, New York, 1965

[7] Zygmund, A. Trigonometric Series, vols. I, II, Cambridge University Press, London, 1968

Cité par Sources :