Algebraic Geometry
Classification of upper motives of algebraic groups of inner type An
[Classification des motifs supérieurs des groupes algébriques intérieurs de type An]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 433-436.

Soient A, A deux algèbres centrales simples sur un corps F et F un corps fini de caractéristique p. Nous prouvons que les facteurs directs indécomposables supérieurs des motifs de deux variétés anisotropes de drapeaux dʼidéaux à droite X(d1,,dk;A) et X(d1,,dk;A) à coefficients dans F sont isomorphes si et seulement si les valuations p-adiques de pgcd(d1,,dk) et pgcd(d1,,dk) sont égales et les classes des composantes p-primaires Ap et Ap de A et A engendrent le même sous-groupe dans le groupe de Brauer de F. Ce résultat mène à une surprenante dichotomie entre les motifs supérieurs des groupes algébriques absolument simples, adjoints et intérieurs de type An.

Let A, A be two central simple algebras over a field F and F be a finite field of characteristic p. We prove that the upper indecomposable direct summands of the motives of two anisotropic varieties of flags of right ideals X(d1,,dk;A) and X(d1,,dk;A) with coefficients in F are isomorphic if and only if the p-adic valuations of gcd(d1,,dk) and gcd(d1,,dk) are equal and the classes of the p-primary components Ap and Ap of A and A generate the same group in the Brauer group of F. This result leads to a surprising dichotomy between upper motives of absolutely simple adjoint algebraic groups of inner type An.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.020
De Clercq, Charles 1

1 Université Pierre-et-Marie-Curie (Paris 6), équipe topologie et géométrie algébriques, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2011__349_7-8_433_0,
     author = {De Clercq, Charles},
     title = {Classification of upper motives of algebraic groups of inner type $ {A}_{n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {433--436},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.020/}
}
TY  - JOUR
AU  - De Clercq, Charles
TI  - Classification of upper motives of algebraic groups of inner type $ {A}_{n}$
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 433
EP  - 436
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.02.020/
DO  - 10.1016/j.crma.2011.02.020
LA  - en
ID  - CRMATH_2011__349_7-8_433_0
ER  - 
%0 Journal Article
%A De Clercq, Charles
%T Classification of upper motives of algebraic groups of inner type $ {A}_{n}$
%J Comptes Rendus. Mathématique
%D 2011
%P 433-436
%V 349
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.02.020/
%R 10.1016/j.crma.2011.02.020
%G en
%F CRMATH_2011__349_7-8_433_0
De Clercq, Charles. Classification of upper motives of algebraic groups of inner type $ {A}_{n}$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 433-436. doi : 10.1016/j.crma.2011.02.020. http://www.numdam.org/articles/10.1016/j.crma.2011.02.020/

[1] Amitsur, S.A. Generic splitting fields of central simple algebras, Ann. of Math., Volume 62 (1955), pp. 8-43

[2] André, Y. Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, vol. 17, Société Mathématique de France, 2004

[3] Chernousov, V.; Merkurjev, A. Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Transform. Groups, Volume 11 (2006), pp. 371-386

[4] De Clercq, C. Motivic decompositions of projective homogeneous varieties and change of coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 17–18, pp. 955-958

[5] Elman, R.; Karpenko, N.; Merkurjev, A. The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society, Providence, 2008

[6] N. Karpenko, Canonical dimension, in: Proceedings of the ICM 2010, vol. II, pp. 146–161.

[7] Karpenko, N. On the first Witt index of quadratic forms, Invent. Math., Volume 153 (2003) no. 2, pp. 455-462

[8] N. Karpenko, Upper motives of algebraic groups and incompressibility of Severi–Brauer varieties, Linear Algebraic Groups and Related Structures (preprint server) 333, 2009.

[9] Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P. The Book of Involutions, AMS Colloquium Publications, vol. 44, American Mathematical Society, 1998

[10] Merkurjev, A.; Panin, A.; Wadsworth, A. Index reduction formulas for twisted flag varieties, I, J. K-Theory, Volume 10 (1996), pp. 517-596

[11] V. Petrov, N. Semenov, Higher Tits indices of algebraic groups, preprint, 2007.

[12] Petrov, V.; Semenov, N.; Zainoulline, K. J-invariant of linear algebraic groups, Ann. Sci. École Norm. Sup., Volume 41 (2008), pp. 1023-1053

[13] A. Vishik, Motives of quadrics with applications to the theory of quadratic forms, in: Proceedings of the Summer School “Geometric Methods in the Algebraic Theory of Quadratic Forms, Lens, 2000”, in: Lect. Notes in Math., vol. 1835, 2004, pp. 25–101.

[14] A. Vishik, Excellent connections in the motives of quadrics, Annales Scientifiques de LʼENS, 2010, in press.

[15] Vishik, A. Fields of u-invariant 2r+1, Algebra, Arithmetic and Geometry – In Honor of Yu.I. Manin, Birkhäuser, 2010, pp. 661-685

[16] Vishik, A.; Yagita, N. Algebraic cobordism of a Pfister quadric, J. Lond. Math. Soc. (2), Volume 76 (2007) no. 3, pp. 586-604

Cité par Sources :