Dans cette Note on établie lʼéquivanence entre la propriété pour un feuilletage dʼêtre riemannien et chacune des conditions suivantes : 1) le feuilletage rélevé sur lʼespace des jets r-transverses est riemannien pour une certaine valeur de ; 2) le feuilletage rélevé sur lʼespace réduit des jets r-transverses est riemannien et verticalement exact pour une certaine valeur de ; 3) il existe un lagrangien positif, admissible et transvers sur , le fibré réduit des jets r-transverses dʼun fibré vectoriel , pour une certaine valeur .
In this Note we prove the equivalence between the Riemannian foliation and each of the following conditions: 1) the lifted foliation on the bundle of r-transverse jets is Riemannian for ; 2) the foliation on the slashed is Riemannian and vertically exact for ; 3) there exists a positively admissible transverse Lagrangian on , the r-transverse slashed jet bundle of a foliated bundle , for .
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_445_0, author = {Popescu, Paul and Popescu, Marcela}, title = {Foliated vector bundles and {Riemannian} foliations}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--449}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.02.017}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.017/} }
TY - JOUR AU - Popescu, Paul AU - Popescu, Marcela TI - Foliated vector bundles and Riemannian foliations JO - Comptes Rendus. Mathématique PY - 2011 SP - 445 EP - 449 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.02.017/ DO - 10.1016/j.crma.2011.02.017 LA - en ID - CRMATH_2011__349_7-8_445_0 ER -
%0 Journal Article %A Popescu, Paul %A Popescu, Marcela %T Foliated vector bundles and Riemannian foliations %J Comptes Rendus. Mathématique %D 2011 %P 445-449 %V 349 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.02.017/ %R 10.1016/j.crma.2011.02.017 %G en %F CRMATH_2011__349_7-8_445_0
Popescu, Paul; Popescu, Marcela. Foliated vector bundles and Riemannian foliations. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 445-449. doi : 10.1016/j.crma.2011.02.017. http://www.numdam.org/articles/10.1016/j.crma.2011.02.017/
[1] Sur la théorie des sous-fibrés vectoriels, C. R. Acad. Sci. Paris, Ser. I, Volume 302 (1986) no. 20, pp. 705-708
[2] New Lagrangian and Hamiltonian. Methods in Field Theory, World Scientific, Singapore, 1997
[3] Finsler foliations of compact manifolds are Riemannian, Differential Geometry and its Applications, Volume 26 (2008) no. 2, pp. 224-226
[4] Lift of the Finsler foliation to its normal bundle, Differential Geometry and its Applications, Volume 24 (2006), pp. 209-214
[5] Riemannian Foliations, Progress in Mathematics, vol. 73, Birhäuser, Boston, 1988
[6] Lagrangians adapted to submersions and foliations, Differential Geometry and its Applications, Volume 27 (2009) no. 2, pp. 171-178
[7] Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001
[8] Feuilletages de type fini compact, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 209-214
Cité par Sources :