On considère les espaces de Sobolev
We consider the Sobolev spaces
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_421_0, author = {Bertoluzza, Silvia and Falletta, Silvia}, title = {Analysis of some injection bounds for {Sobolev} spaces by wavelet decomposition}, journal = {Comptes Rendus. Math\'ematique}, pages = {421--423}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.02.015}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.02.015/} }
TY - JOUR AU - Bertoluzza, Silvia AU - Falletta, Silvia TI - Analysis of some injection bounds for Sobolev spaces by wavelet decomposition JO - Comptes Rendus. Mathématique PY - 2011 SP - 421 EP - 423 VL - 349 IS - 7-8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.02.015/ DO - 10.1016/j.crma.2011.02.015 LA - en ID - CRMATH_2011__349_7-8_421_0 ER -
%0 Journal Article %A Bertoluzza, Silvia %A Falletta, Silvia %T Analysis of some injection bounds for Sobolev spaces by wavelet decomposition %J Comptes Rendus. Mathématique %D 2011 %P 421-423 %V 349 %N 7-8 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.02.015/ %R 10.1016/j.crma.2011.02.015 %G en %F CRMATH_2011__349_7-8_421_0
Bertoluzza, Silvia; Falletta, Silvia. Analysis of some injection bounds for Sobolev spaces by wavelet decomposition. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 421-423. doi : 10.1016/j.crma.2011.02.015. https://www.numdam.org/articles/10.1016/j.crma.2011.02.015/
[1] Substructuring preconditioners for the three fields domain decomposition method, Math. Comp., Volume 73 (2003) no. 246, pp. 659-689
[2] The method of mothers for non-overlapping non-matching DDM, Numer. Math., Volume 107 (2007) no. 3, pp. 397-431
[3] S. Bertoluzza, S. Falletta, Analysis of some injection bounds for Besov spaces by using wavelet schemes, Technical report, 2011.
[4] Numerical Analysis of Wavelet Methods, Studies in Mathematics and Its Applications, vol. 32, North-Holland, Amsterdam, 2003
[5] S. Falletta, Analysis of the mortar method with approximate integration: the effect of cross-points, Technical report 1298, I.A.N., 2002.
[6] Non Homogeneous Boundary Value Problems and Applications, vol. I, Springer, 1972
[7] Interpolation Theory, Function Spaces, Differential Operators, Heidelberg, 1995
Cité par Sources :