Harmonic Analysis/Functional Analysis
Analysis of some injection bounds for Sobolev spaces by wavelet decomposition
[Analyse de quelques bornes dʼinjection des espaces de Sobolev, en utilisant la décomposition par ondelettes]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 421-423.

On considère les espaces de Sobolev Hs(Ω) et H0s(Ω), et lʼespace de Besov B2,1/2(Ω), ou Ω est un domaine suffisamment régulier (voir Lemme 2) de R2. On sait que pour des valeurs de s[0,1/2) les deux espaces de Sobolev coïncident, avec équivalence des normes, et quʼon a lʼinclusion B2,1/2(Ω)Hs(Ω). Cet article donne une analyse explicite des constantes qui apparaissent dans les bornes dʼinclusion Hs(Ω)H0s(Ω) and B2,1/2(Ω)Hs(Ω) et, plus précisément, de leur dépendance du paramètre de régularité s. On utilise pour cela la caractérisation par ondelettes des normes correspondantes.

We consider the Sobolev spaces Hs(Ω) and H0s(Ω) and the Besov spaces B2,1/2(Ω), where Ω is a sufficiently regular (see Lemma 2) subdomain of R2. It is well known that for the values of s[0,1/2) the two Sobolev spaces coincide, with equivalence of the norms, and that the inclusion B2,1/2(Ω)Hs(Ω) holds. The Note is concerned with the explicit analysis of the constants appearing in the continuity bounds for the injections Hs(Ω)H0s(Ω) and B2,1/2(Ω)Hs(Ω) and of their dependence on the regularity s of the spaces. The analysis is carried out by using the wavelet characterization of the corresponding norms.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.015
Bertoluzza, Silvia 1 ; Falletta, Silvia 2

1 IMATI-CNR, V. Ferrata 1, 27100 Pavia, Italy
2 Dip. Matematica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
@article{CRMATH_2011__349_7-8_421_0,
     author = {Bertoluzza, Silvia and Falletta, Silvia},
     title = {Analysis of some injection bounds for {Sobolev} spaces by wavelet decomposition},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {421--423},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.015/}
}
TY  - JOUR
AU  - Bertoluzza, Silvia
AU  - Falletta, Silvia
TI  - Analysis of some injection bounds for Sobolev spaces by wavelet decomposition
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 421
EP  - 423
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.02.015/
DO  - 10.1016/j.crma.2011.02.015
LA  - en
ID  - CRMATH_2011__349_7-8_421_0
ER  - 
%0 Journal Article
%A Bertoluzza, Silvia
%A Falletta, Silvia
%T Analysis of some injection bounds for Sobolev spaces by wavelet decomposition
%J Comptes Rendus. Mathématique
%D 2011
%P 421-423
%V 349
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.02.015/
%R 10.1016/j.crma.2011.02.015
%G en
%F CRMATH_2011__349_7-8_421_0
Bertoluzza, Silvia; Falletta, Silvia. Analysis of some injection bounds for Sobolev spaces by wavelet decomposition. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 421-423. doi : 10.1016/j.crma.2011.02.015. http://www.numdam.org/articles/10.1016/j.crma.2011.02.015/

[1] Bertoluzza, S. Substructuring preconditioners for the three fields domain decomposition method, Math. Comp., Volume 73 (2003) no. 246, pp. 659-689

[2] Bertoluzza, S.; Brezzi, F.; Sangalli, G. The method of mothers for non-overlapping non-matching DDM, Numer. Math., Volume 107 (2007) no. 3, pp. 397-431

[3] S. Bertoluzza, S. Falletta, Analysis of some injection bounds for Besov spaces by using wavelet schemes, Technical report, 2011.

[4] Cohen, A. Numerical Analysis of Wavelet Methods, Studies in Mathematics and Its Applications, vol. 32, North-Holland, Amsterdam, 2003

[5] S. Falletta, Analysis of the mortar method with approximate integration: the effect of cross-points, Technical report 1298, I.A.N., 2002.

[6] Lions, J.L.; Magenes, E. Non Homogeneous Boundary Value Problems and Applications, vol. I, Springer, 1972

[7] Triebel, H. Interpolation Theory, Function Spaces, Differential Operators, Heidelberg, 1995

Cité par Sources :