Complex Analysis/Theory of Signals
Wavelet frames with Laguerre functions
[Frames dʼondelettes et fonctions de Laguerre]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 255-258.

Soit le fonction Φnα de la forme FΦnα(t)=t12lnα(2t), ou lnα est une fonction de Laguerre et Γ(a,b)={(ambk,am)}k,mZ est une reseau hyperbolique. Notre resultat principal dit que, si lʼ ensemble dʼondelettes W(Φnα,Γ(a,b)) est un frame pour H2(C+), alors, bloga<4πn+1α+1.

Consider the functions Φnα defined as FΦnα(t)=t12lnα(2t), where lnα is a Laguerre function and Γ(a,b)={(ambk,am)}k,mZ is a hyperbolic lattice. We prove that, if the wavelet system W(Φnα,Γ(a,b)) is a frame of H2(C+), then bloga<4πn+1α+1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.013
Abreu, Luis Daniel 1

1 CMUC, Departamento de Matemática da Universidade de Coimbra, 3001-454 Coimbra, Portugal
@article{CRMATH_2011__349_5-6_255_0,
     author = {Abreu, Luis Daniel},
     title = {Wavelet frames with {Laguerre} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {255--258},
     publisher = {Elsevier},
     volume = {349},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.013/}
}
TY  - JOUR
AU  - Abreu, Luis Daniel
TI  - Wavelet frames with Laguerre functions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 255
EP  - 258
VL  - 349
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.02.013/
DO  - 10.1016/j.crma.2011.02.013
LA  - en
ID  - CRMATH_2011__349_5-6_255_0
ER  - 
%0 Journal Article
%A Abreu, Luis Daniel
%T Wavelet frames with Laguerre functions
%J Comptes Rendus. Mathématique
%D 2011
%P 255-258
%V 349
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.02.013/
%R 10.1016/j.crma.2011.02.013
%G en
%F CRMATH_2011__349_5-6_255_0
Abreu, Luis Daniel. Wavelet frames with Laguerre functions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 255-258. doi : 10.1016/j.crma.2011.02.013. http://www.numdam.org/articles/10.1016/j.crma.2011.02.013/

[1] Abreu, L.D. Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions, Appl. Comput. Harmon. Anal., Volume 29 (2010) no. 3, pp. 287-302

[2] L.D. Abreu, Beurling type density theorems for polyanalytic functions in the unit disc, in preparation.

[3] L.D. Abreu, Super-wavelets versus poly-Bergman spaces, in preparation.

[4] Ascensi, G.; Bruna, J. Model space results for the Gabor and wavelet transforms, IEEE Trans. Inform. Theory, Volume 55 (2009) no. 5, pp. 2250-2259

[5] Gröchenig, K.; Lyubarskii, Y. Gabor frames with Hermite functions, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 157-162

[6] Gröchenig, K.; Lyubarskii, Y. Gabor (super) frames with Hermite functions, Math. Ann., Volume 345 (2009) no. 2, pp. 267-286

[7] Heil, C.; Kutyniok, G. Density of weighted wavelet frames, J. Geom. Anal., Volume 13 (2003) no. 3, pp. 479-493

[8] Seip, K. Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer. Math. Soc., Volume 117 (1993) no. 1, pp. 213-220

[9] Seip, K. Beurling type density theorems in the unit disc, Invent. Math., Volume 113 (1993), pp. 21-39

[10] Sun, W. Density of wavelet frames, Appl. Comput. Harmon. Anal., Volume 22 (2007) no. 2, pp. 264-272

Cité par Sources :

This research was partially supported by CMUC/FCT and FCT project “Frame Design” PTDC/MAT/114394/2009, POCI 2010 and FSE.