[Existence de solutions faibles globales dʼun modèle bicouche bidimensionnel de Saint-Venant]
Nous considérons un système composé par deux fluides immiscibles dans un domaine bidimensionnel pouvant être représenté par un modèle bicouche visqueux de Saint-Venant avec des termes de friction additionnels et des effets de capillarité. Nous donnons un théorème dʼexistence de solutions faibles globales dans un domaine périodique.
We consider a system composed by two immiscible fluids in two-dimensional space that can be modelized by a bilayer Shallow Water equations with extra friction terms and capillary effects. We give an existence theorem of global weak solutions in a periodic domain.
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_285_0, author = {Narbona-Reina, Gladys and Zabsonr\'e, Jean De Dieu}, title = {Existence of global weak solutions for a viscous {2D} bilayer {Shallow} {Water} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {285--289}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.02.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.011/} }
TY - JOUR AU - Narbona-Reina, Gladys AU - Zabsonré, Jean De Dieu TI - Existence of global weak solutions for a viscous 2D bilayer Shallow Water model JO - Comptes Rendus. Mathématique PY - 2011 SP - 285 EP - 289 VL - 349 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.02.011/ DO - 10.1016/j.crma.2011.02.011 LA - en ID - CRMATH_2011__349_5-6_285_0 ER -
%0 Journal Article %A Narbona-Reina, Gladys %A Zabsonré, Jean De Dieu %T Existence of global weak solutions for a viscous 2D bilayer Shallow Water model %J Comptes Rendus. Mathématique %D 2011 %P 285-289 %V 349 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.02.011/ %R 10.1016/j.crma.2011.02.011 %G en %F CRMATH_2011__349_5-6_285_0
Narbona-Reina, Gladys; Zabsonré, Jean De Dieu. Existence of global weak solutions for a viscous 2D bilayer Shallow Water model. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 285-289. doi : 10.1016/j.crma.2011.02.011. http://www.numdam.org/articles/10.1016/j.crma.2011.02.011/
[1] Existence of weak solutions for 2d viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., Volume 238 (2003) no. 1,2, pp. 211-223
[2] On the construction of approximate solutions for the 2d viscous shallow water model and for compressible Navier–Stokes models, J. Math. Pure Appl., Volume 86 (2006), pp. 362-368
[3] Another proof of stability for global weak solutions of 2D degenerated shallow water models, J. Math. Fluid Mech., Volume 11 (2009) no. 4, pp. 536-551
[4] Sur un problème de shallow water bicouche avec conditions aux limites de Dirichlet, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 719-724
[5] On a bi-layer shallow water problem, Nonlinear Anal., Volume 4 (2003), pp. 139-171
[6] Derivation of a bi-layer Shallow-Water model with viscosity. Numerical validation, CMES, Volume 43 (2009) no. 1, pp. 27-71
[7] Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 2971-2984
Cité par Sources :