Partial Differential Equations/Mathematical Problems in Mechanics
Existence of global weak solutions for a viscous 2D bilayer Shallow Water model
[Existence de solutions faibles globales dʼun modèle bicouche bidimensionnel de Saint-Venant]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 285-289.

Nous considérons un système composé par deux fluides immiscibles dans un domaine bidimensionnel pouvant être représenté par un modèle bicouche visqueux de Saint-Venant avec des termes de friction additionnels et des effets de capillarité. Nous donnons un théorème dʼexistence de solutions faibles globales dans un domaine périodique.

We consider a system composed by two immiscible fluids in two-dimensional space that can be modelized by a bilayer Shallow Water equations with extra friction terms and capillary effects. We give an existence theorem of global weak solutions in a periodic domain.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.011
Narbona-Reina, Gladys 1 ; Zabsonré, Jean De Dieu 2

1 Universidad de Sevilla, Dpto. Matemática Aplicada I, Avda. Reina Mercedes 2, 41012 Sevilla, Spain
2 Université polytechnique de Bobo-Dioulasso, Institut des sciences exactes et appliquées, 01 BP 1091, Bobo 01, Bobo-Dioulasso, Burkina Faso
@article{CRMATH_2011__349_5-6_285_0,
     author = {Narbona-Reina, Gladys and Zabsonr\'e, Jean De Dieu},
     title = {Existence of global weak solutions for a viscous {2D} bilayer {Shallow} {Water} model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {285--289},
     publisher = {Elsevier},
     volume = {349},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.011/}
}
TY  - JOUR
AU  - Narbona-Reina, Gladys
AU  - Zabsonré, Jean De Dieu
TI  - Existence of global weak solutions for a viscous 2D bilayer Shallow Water model
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 285
EP  - 289
VL  - 349
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.02.011/
DO  - 10.1016/j.crma.2011.02.011
LA  - en
ID  - CRMATH_2011__349_5-6_285_0
ER  - 
%0 Journal Article
%A Narbona-Reina, Gladys
%A Zabsonré, Jean De Dieu
%T Existence of global weak solutions for a viscous 2D bilayer Shallow Water model
%J Comptes Rendus. Mathématique
%D 2011
%P 285-289
%V 349
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.02.011/
%R 10.1016/j.crma.2011.02.011
%G en
%F CRMATH_2011__349_5-6_285_0
Narbona-Reina, Gladys; Zabsonré, Jean De Dieu. Existence of global weak solutions for a viscous 2D bilayer Shallow Water model. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 285-289. doi : 10.1016/j.crma.2011.02.011. http://www.numdam.org/articles/10.1016/j.crma.2011.02.011/

[1] Bresch, D.; Desjardins, B. Existence of weak solutions for 2d viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., Volume 238 (2003) no. 1,2, pp. 211-223

[2] Bresch, D.; Desjardins, B. On the construction of approximate solutions for the 2d viscous shallow water model and for compressible Navier–Stokes models, J. Math. Pure Appl., Volume 86 (2006), pp. 362-368

[3] Fabrie, P.; Marche, F. Another proof of stability for global weak solutions of 2D degenerated shallow water models, J. Math. Fluid Mech., Volume 11 (2009) no. 4, pp. 536-551

[4] Flori, F.; Orenga, P.; Peybernes, M. Sur un problème de shallow water bicouche avec conditions aux limites de Dirichlet, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 719-724

[5] Munoz-Ruiz, M.L.; Chatelon, F.J.; Orenga, P. On a bi-layer shallow water problem, Nonlinear Anal., Volume 4 (2003), pp. 139-171

[6] Narbona-Reina, G.; Zabsonré, J.D.D.; Fernández-Nieto, E.; Bresch, D. Derivation of a bi-layer Shallow-Water model with viscosity. Numerical validation, CMES, Volume 43 (2009) no. 1, pp. 27-71

[7] Zabsonré, J.D.D.; Narbona-Reina, G. Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 2971-2984

Cité par Sources :