Functional Analysis/Mathematical Physics
Phase transitions for XY-model on the Cayley tree of order three in quantum Markov chain scheme
[Transitions de phases pour un modèle XY sur un arbre de Cayley dʼordre trois dans un schéma de chaines de Markov quantiques]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 425-428.

Dans cette Note on étudie des chaines de Markov directes (QMC) définies sur un arbre de Cayley. En utilisant la structure en arbre des graphes on donne une construction de chaines de Markov quantiques sur un arbre de Cayley. Au moyen de telles constructions on démontre lʼexistence dʼune transition de phases pour un modèle XY sur un arbre de Cayley dʼordre trois dans un schéma QMC. La transition de phases correspond ici à lʼexistence de deux QMC distinctes pour une famille {Kx,y} dʼopérateurs dʼinteractions.

In the present Note we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on the Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two distinct QMC for the given family of interaction operators {Kx,y}.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.010
Mukhamedov, Farrukh 1 ; Saburov, Mansoor 1

1 Department of Computational & Theoretical Sciences, Faculty of Science, International Islamic University Malaysia, PO Box 141, 25710 Kuantan, Pahang, Malaysia
@article{CRMATH_2011__349_7-8_425_0,
     author = {Mukhamedov, Farrukh and Saburov, Mansoor},
     title = {Phase transitions for {\protect\emph{XY}-model} on the {Cayley} tree of order three in quantum {Markov} chain scheme},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {425--428},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.010/}
}
TY  - JOUR
AU  - Mukhamedov, Farrukh
AU  - Saburov, Mansoor
TI  - Phase transitions for XY-model on the Cayley tree of order three in quantum Markov chain scheme
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 425
EP  - 428
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.02.010/
DO  - 10.1016/j.crma.2011.02.010
LA  - en
ID  - CRMATH_2011__349_7-8_425_0
ER  - 
%0 Journal Article
%A Mukhamedov, Farrukh
%A Saburov, Mansoor
%T Phase transitions for XY-model on the Cayley tree of order three in quantum Markov chain scheme
%J Comptes Rendus. Mathématique
%D 2011
%P 425-428
%V 349
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.02.010/
%R 10.1016/j.crma.2011.02.010
%G en
%F CRMATH_2011__349_7-8_425_0
Mukhamedov, Farrukh; Saburov, Mansoor. Phase transitions for XY-model on the Cayley tree of order three in quantum Markov chain scheme. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 425-428. doi : 10.1016/j.crma.2011.02.010. http://www.numdam.org/articles/10.1016/j.crma.2011.02.010/

[1] Accardi, L. On the noncommutative Markov property, Funct. Anal. Appl., Volume 9 (1975), pp. 1-8

[2] Accardi, L.; Fidaleo, F. Quantum Markov fields, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 6 (2003), pp. 123-138

[3] Accardi, L.; Frigerio, A. Markovian cocycles, Proc. Roy. Irish Acad. Sect. A, Volume 83 (1983), pp. 251-263

[4] Accardi, L.; Mukhamedov, F.; Saburov, M. On Quantum Markov Chains on Cayley tree I: uniqueness of the associated chain with XY-model on the Cayley tree of order two, Infin. Dimens. Anal. Quantum Probab. Relat. Top., in press | arXiv

[5] Accardi, L.; Ohno, H.; Mukhamedov, F. Quantum Markov fields on graphs, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 13 (2010), pp. 165-189

[6] Affleck, L.; Kennedy, E.; Lieb, E.H.; Tasaki, H. Valence bond ground states in isotropic quantum antiferromagnets, Comm. Math. Phys., Volume 115 (1988), pp. 477-528

[7] Bratteli, O.; Robinson, D.W. Operator Algebras and Quantum Statistical Mechanics. 1, Texts and Monographs in Physics, Springer-Verlag, New York, 1987

[8] Fannes, M.; Nachtergaele, B.; Werner, R.F. Ground states of VBS models on Cayley trees, J. Stat. Phys., Volume 66 (1992), pp. 939-973

[9] Fröhlich, J.; Israel, R.; Lieb, E.; Simon, B. Phase transitions and reflection positivity. I. General theory and long range lattice models, Comm. Math. Phys., Volume 62 (1978), pp. 1-34

[10] V. Liebscher, Markovianity of quantum random fields in the B(H) case, in: W. Freudenberg (Ed.), Proceedings of the Conference “Quantum Probability and Infinite-Dimensional Analysis”, Burg, Germany, 15–20 March 2001, QP–PQ Series, vol. 15, World Scientific, 2003, pp. 151–159.

Cité par Sources :