Partial Differential Equations
Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces
[Infinité de solutions pour une classe de problèmes non linéaires de valeurs propres dans les espaces dʼOrlicz–Sobolev]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 263-268.

On étudie le problème de Neumann div(α(|u|)u)+α(|u|)u=λf(x,u) dans Ω, u/ν=0 sur ∂Ω, où Ω est un domaine borné régulier de RN, λ est un paramètre positif, f est une fonction continue et α est une application définie sur (0,). Le résultat principal de cette Note montre que pour tout λ dans un certain intervalle ouvert, ce problème admet une infinité de solutions qui convergent vers zéro dans lʼespace dʼOrlicz–Sobolev W1LΦ(Ω).

We study the Neumann problem div(α(|u|)u)+α(|u|)u=λf(x,u) in Ω, u/ν=0 on ∂Ω, where Ω is a smooth bounded domain in RN, λ is a positive parameter, f is a continuous function, and α is a real-valued mapping defined on (0,). The main result in this Note establishes that for all λ in a prescribed open interval, this problem has infinitely many solutions that converge to zero in the Orlicz–Sobolev space W1LΦ(Ω).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.009
Bonanno, Gabriele 1 ; Molica Bisci, Giovanni 2 ; Rădulescu, Vicenţiu 3, 4

1 Department of Science for Engineering and Architecture (Mathematics Section), Engineering Faculty, University of Messina, 98166 Messina, Italy
2 Department P.A.U., Architecture Faculty, University of Reggio Calabria, 89100 Reggio Calabria, Italy
3 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 014700 Bucharest, Romania
4 Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania
@article{CRMATH_2011__349_5-6_263_0,
     author = {Bonanno, Gabriele and Molica Bisci, Giovanni and R\u{a}dulescu, Vicen\c{t}iu},
     title = {Infinitely many solutions for a class of nonlinear eigenvalue problem in {Orlicz{\textendash}Sobolev} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {263--268},
     publisher = {Elsevier},
     volume = {349},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.009/}
}
TY  - JOUR
AU  - Bonanno, Gabriele
AU  - Molica Bisci, Giovanni
AU  - Rădulescu, Vicenţiu
TI  - Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 263
EP  - 268
VL  - 349
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.02.009/
DO  - 10.1016/j.crma.2011.02.009
LA  - en
ID  - CRMATH_2011__349_5-6_263_0
ER  - 
%0 Journal Article
%A Bonanno, Gabriele
%A Molica Bisci, Giovanni
%A Rădulescu, Vicenţiu
%T Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces
%J Comptes Rendus. Mathématique
%D 2011
%P 263-268
%V 349
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.02.009/
%R 10.1016/j.crma.2011.02.009
%G en
%F CRMATH_2011__349_5-6_263_0
Bonanno, Gabriele; Molica Bisci, Giovanni; Rădulescu, Vicenţiu. Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 263-268. doi : 10.1016/j.crma.2011.02.009. http://www.numdam.org/articles/10.1016/j.crma.2011.02.009/

[1] Adams, R.A. Sobolev Spaces, Academic Press, New York, 1975

[2] Bonanno, G.; Molica Bisci, G. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., Volume 2009 (2009), pp. 1-20

[3] G. Bonanno, G. Molica Bisci, V. Rădulescu, Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces, Monatsh. Math., doi:, in press. | DOI

[4] Clément, Ph.; García-Huidobro, M.; Manásevich, R.; Schmitt, K. Mountain pass type solutions for quasilinear elliptic equations, Calc. Var., Volume 11 (2000), pp. 33-62

[5] Clément, Ph.; de Pagter, B.; Sweers, G.; de Thélin, F. Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces, Mediterr. J. Math., Volume 1 (2004), pp. 241-267

[6] Garciá-Huidobro, M.; Le, V.K.; Manásevich, R.; Schmitt, K. On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting, Nonlinear Differential Equations Appl. (NoDEA), Volume 6 (1999), pp. 207-225

[7] Kristály, A.; Mihăilescu, M.; Rădulescu, V. Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting, Proc. Roy. Soc. Edinburgh Sect. A, Volume 139 (2009), pp. 367-379

[8] Ricceri, B. A general variational principle and some of its applications, J. Comput. Appl. Math., Volume 113 (2000), pp. 401-410

[9] Zeidler, E., Nonlinear Functional Analysis and Its Applications, vol. III, Springer-Verlag, Berlin, 1985

Cité par Sources :