[Infinité de solutions pour une classe de problèmes non linéaires de valeurs propres dans les espaces dʼOrlicz–Sobolev]
On étudie le problème de Neumann dans Ω, sur ∂Ω, où Ω est un domaine borné régulier de , λ est un paramètre positif, f est une fonction continue et α est une application définie sur . Le résultat principal de cette Note montre que pour tout λ dans un certain intervalle ouvert, ce problème admet une infinité de solutions qui convergent vers zéro dans lʼespace dʼOrlicz–Sobolev .
We study the Neumann problem in Ω, on ∂Ω, where Ω is a smooth bounded domain in , λ is a positive parameter, f is a continuous function, and α is a real-valued mapping defined on . The main result in this Note establishes that for all λ in a prescribed open interval, this problem has infinitely many solutions that converge to zero in the Orlicz–Sobolev space .
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_263_0, author = {Bonanno, Gabriele and Molica Bisci, Giovanni and R\u{a}dulescu, Vicen\c{t}iu}, title = {Infinitely many solutions for a class of nonlinear eigenvalue problem in {Orlicz{\textendash}Sobolev} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {263--268}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.02.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.009/} }
TY - JOUR AU - Bonanno, Gabriele AU - Molica Bisci, Giovanni AU - Rădulescu, Vicenţiu TI - Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces JO - Comptes Rendus. Mathématique PY - 2011 SP - 263 EP - 268 VL - 349 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.02.009/ DO - 10.1016/j.crma.2011.02.009 LA - en ID - CRMATH_2011__349_5-6_263_0 ER -
%0 Journal Article %A Bonanno, Gabriele %A Molica Bisci, Giovanni %A Rădulescu, Vicenţiu %T Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces %J Comptes Rendus. Mathématique %D 2011 %P 263-268 %V 349 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.02.009/ %R 10.1016/j.crma.2011.02.009 %G en %F CRMATH_2011__349_5-6_263_0
Bonanno, Gabriele; Molica Bisci, Giovanni; Rădulescu, Vicenţiu. Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 263-268. doi : 10.1016/j.crma.2011.02.009. http://www.numdam.org/articles/10.1016/j.crma.2011.02.009/
[1] Sobolev Spaces, Academic Press, New York, 1975
[2] Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., Volume 2009 (2009), pp. 1-20
[3] G. Bonanno, G. Molica Bisci, V. Rădulescu, Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces, Monatsh. Math., doi:, in press. | DOI
[4] Mountain pass type solutions for quasilinear elliptic equations, Calc. Var., Volume 11 (2000), pp. 33-62
[5] Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces, Mediterr. J. Math., Volume 1 (2004), pp. 241-267
[6] On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting, Nonlinear Differential Equations Appl. (NoDEA), Volume 6 (1999), pp. 207-225
[7] Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting, Proc. Roy. Soc. Edinburgh Sect. A, Volume 139 (2009), pp. 367-379
[8] A general variational principle and some of its applications, J. Comput. Appl. Math., Volume 113 (2000), pp. 401-410
[9] , Nonlinear Functional Analysis and Its Applications, vol. III, Springer-Verlag, Berlin, 1985
Cité par Sources :