Probability Theory
On the convergence of orthogonal series
[Sur la convergence des systèmes orthogonaux]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 455-458.

Nous proposons une nouvelle approche pour démontrer que la convergence presque sure de la série n=1anφn pour tous les systèmes orthogonaux (φn)n=1 est équivalente à lʼexistence dʼune mesure majorante sur lʼensemble T={m=nam2:n1}{0}. Lʼingrédient principal est une nouvelle méthode de construction de séries orthogonales.

In this Note we present a new approach to the complete characterization of the a.s. convergence of orthogonal series. We sketch a new proof that a.s. convergence of n=1anφn for all orthonormal systems (φn)n=1 is equivalent to the existence of a majorizing measure on the set T={m=nam2:n1}{0}. The method is based on the chaining argument used for a certain partitioning scheme.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.001
Bednorz, Witold 1

1 Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
@article{CRMATH_2011__349_7-8_455_0,
     author = {Bednorz, Witold},
     title = {On the convergence of orthogonal series},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {455--458},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.001/}
}
TY  - JOUR
AU  - Bednorz, Witold
TI  - On the convergence of orthogonal series
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 455
EP  - 458
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.02.001/
DO  - 10.1016/j.crma.2011.02.001
LA  - en
ID  - CRMATH_2011__349_7-8_455_0
ER  - 
%0 Journal Article
%A Bednorz, Witold
%T On the convergence of orthogonal series
%J Comptes Rendus. Mathématique
%D 2011
%P 455-458
%V 349
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.02.001/
%R 10.1016/j.crma.2011.02.001
%G en
%F CRMATH_2011__349_7-8_455_0
Bednorz, Witold. On the convergence of orthogonal series. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 455-458. doi : 10.1016/j.crma.2011.02.001. http://www.numdam.org/articles/10.1016/j.crma.2011.02.001/

[1] Bednorz, W. A theorem on majorizing measures, Ann. Probab., Volume 34 (2006) no. 5, pp. 1771-1781

[2] Bednorz, W. Majorizing measures on metric spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2009) no. 1–2, pp. 75-78

[3] Fernique, X. Régularité de fonctions aléatoires non gaussiennes, Ecole dʼÉté de Probabilités de Saint-Flour XI-1981, Lecture Notes in Mathematics, vol. 976, Springer, 1983, pp. 1-74

[4] Kashin, B.S.; Saakyan, A.A. Orthogonal Series, Translation of Mathematical Monographs, vol. 75, Amer. Math. Soc., 1989

[5] Latala, R. Sudakov minoration principle and supremum of some processes, Geom. Funct. Anal., Volume 7 (1997), pp. 936-953

[6] Moricz, F.; Tandori, K. An improved Menchov–Rademacher theorem, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 877-885

[7] Paszkiewicz, A. The explicit characterization of coefficients of a.e. convergent orthogonal series, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2008) no. 19–20, pp. 1213-1216

[8] Paszkiewicz, A. A complete characterization of coefficients of a.e. convergent orthogonal series and majorizing measures, Invent. Math., Volume 180 (2010), pp. 55-110

[9] Talagrand, M. Regularity of Gaussian processes, Acta Math., Volume 159 (1987) no. 1–2, pp. 99-149

[10] Talagrand, M. Sample boundedness of stochastic processes under increment conditions, Ann. Probab., Volume 18 (1990) no. 1, pp. 1-49

[11] Talagrand, M. The supremum of some canonical processes, Amer. J. Math., Volume 116 (1994) no. 2, pp. 283-325

[12] Tandori, K. Über die Konvergenz der Orthogonalerihen, Acta Sci. Math., Volume 24 (1963), pp. 139-151

Cité par Sources :