Nous proposons une nouvelle approche pour démontrer que la convergence presque sure de la série pour tous les systèmes orthogonaux est équivalente à lʼexistence dʼune mesure majorante sur lʼensemble . Lʼingrédient principal est une nouvelle méthode de construction de séries orthogonales.
In this Note we present a new approach to the complete characterization of the a.s. convergence of orthogonal series. We sketch a new proof that a.s. convergence of for all orthonormal systems is equivalent to the existence of a majorizing measure on the set . The method is based on the chaining argument used for a certain partitioning scheme.
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_455_0, author = {Bednorz, Witold}, title = {On the convergence of orthogonal series}, journal = {Comptes Rendus. Math\'ematique}, pages = {455--458}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.02.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.02.001/} }
TY - JOUR AU - Bednorz, Witold TI - On the convergence of orthogonal series JO - Comptes Rendus. Mathématique PY - 2011 SP - 455 EP - 458 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.02.001/ DO - 10.1016/j.crma.2011.02.001 LA - en ID - CRMATH_2011__349_7-8_455_0 ER -
Bednorz, Witold. On the convergence of orthogonal series. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 455-458. doi : 10.1016/j.crma.2011.02.001. http://www.numdam.org/articles/10.1016/j.crma.2011.02.001/
[1] A theorem on majorizing measures, Ann. Probab., Volume 34 (2006) no. 5, pp. 1771-1781
[2] Majorizing measures on metric spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2009) no. 1–2, pp. 75-78
[3] Régularité de fonctions aléatoires non gaussiennes, Ecole dʼÉté de Probabilités de Saint-Flour XI-1981, Lecture Notes in Mathematics, vol. 976, Springer, 1983, pp. 1-74
[4] Orthogonal Series, Translation of Mathematical Monographs, vol. 75, Amer. Math. Soc., 1989
[5] Sudakov minoration principle and supremum of some processes, Geom. Funct. Anal., Volume 7 (1997), pp. 936-953
[6] An improved Menchov–Rademacher theorem, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 877-885
[7] The explicit characterization of coefficients of a.e. convergent orthogonal series, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2008) no. 19–20, pp. 1213-1216
[8] A complete characterization of coefficients of a.e. convergent orthogonal series and majorizing measures, Invent. Math., Volume 180 (2010), pp. 55-110
[9] Regularity of Gaussian processes, Acta Math., Volume 159 (1987) no. 1–2, pp. 99-149
[10] Sample boundedness of stochastic processes under increment conditions, Ann. Probab., Volume 18 (1990) no. 1, pp. 1-49
[11] The supremum of some canonical processes, Amer. J. Math., Volume 116 (1994) no. 2, pp. 283-325
[12] Über die Konvergenz der Orthogonalerihen, Acta Sci. Math., Volume 24 (1963), pp. 139-151
Cité par Sources :