Nous étudions le concept des Lagrangiens autoconjugués non-convexes ainsi que le calcul qui leur est associé, de même que leurs champs de vecteurs derivés, reliés à nombre dʼéquations aux dérivées partielles et de systèmes dʼévolution. Nous obtenons de nouvelles formulations variationnelles pour une grande classe dʼéquations aux dérivées partielles et comprenant une large variété de conditions aux limites linéaires et non-linéaires qui englobe la plupart des conditions aux limites usuelles. Cette approche semble offrir certains avantages : Elle associe au problème aux limites donné un certain nombre de fonctions potentiel qui peuvent être maniées avec plus de facilité par rapport à dʼautres méthodes telles celles faisant usage des fonctions dʼEuler–Lagrange. Ces fonctions potentiel peuvent être aisément adaptées afin de traiter des problèmes aux limites non-linéaires et homogènes.
We study the concept and the calculus of non-convex self-dual (Nc-SD) Lagrangians and their derived vector fields which are associated to many partial differential equations and evolution systems. They yield new variational resolutions for large class of partial differential equations with variety of linear and non-linear boundary conditions including many of the standard ones. This approach seems to offer several useful advantages: It associates to a boundary value problem several potential functions which can often be used with relative ease compared to other methods such as the use of Euler–Lagrange functions. These potential functions are quite flexible, and can be adapted to easily deal with both non-linear and homogeneous boundary value problems.
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_417_0, author = {Moameni, Abbas}, title = {Non-convex self-dual {Lagrangians} and variational principles for certain {PDE's}}, journal = {Comptes Rendus. Math\'ematique}, pages = {417--420}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.01.028}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.028/} }
TY - JOUR AU - Moameni, Abbas TI - Non-convex self-dual Lagrangians and variational principles for certain PDEʼs JO - Comptes Rendus. Mathématique PY - 2011 SP - 417 EP - 420 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.028/ DO - 10.1016/j.crma.2011.01.028 LA - en ID - CRMATH_2011__349_7-8_417_0 ER -
%0 Journal Article %A Moameni, Abbas %T Non-convex self-dual Lagrangians and variational principles for certain PDEʼs %J Comptes Rendus. Mathématique %D 2011 %P 417-420 %V 349 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.01.028/ %R 10.1016/j.crma.2011.01.028 %G en %F CRMATH_2011__349_7-8_417_0
Moameni, Abbas. Non-convex self-dual Lagrangians and variational principles for certain PDEʼs. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 417-420. doi : 10.1016/j.crma.2011.01.028. http://www.numdam.org/articles/10.1016/j.crma.2011.01.028/
[1] Periodic solution to Hamiltonian inclusions, J. Differential Equations, Volume 40 (1981) no. 1, pp. 1-6
[2] Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Differential Equations, Volume 34 (1979), pp. 523-534
[3] A variational principle associated with a certain class of boundary value problems, Differential Integral Equations, Volume 23 (2010) no. 3–4, pp. 253-264
[4] Non-convex self-dual Lagrangians: New variational principles of symmetric boundary value problems, J. Funct. Anal., Volume 260 (2011), pp. 2674-2715
[5] A. Moameni, Non-convex self-dual Lagrangians: New variational principles of symmetric boundary value problems: Evolution case, submitted for publication.
[6] Conjugate Duality and Optimisation, CBMS–NSF Regional Conference Series in Applied Mathematics, vol. 16, SIAM, Philadelphia, 1976
[7] A Fenchel–Rockafellar type duality theorem for maximization, Bull. Austral. Math. Soc., Volume 20 (1979) no. 2, pp. 193-198
[8] A duality principle for nonconvex optimization and the calculus of variations, Arch. Ration. Mech. Anal., Volume 60 (1979), pp. 177-183
Cité par Sources :