Nous considérons lʼapplication de Schrödinger sur la 2-sphère énergie critique
We consider the energy critical Schrödinger map
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_279_0, author = {Merle, Frank and Rapha\"el, Pierre and Rodnianski, Igor}, title = {Blow up dynamics for smooth equivariant solutions to the energy critical {Schr\"odinger} map}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--283}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.026}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.01.026/} }
TY - JOUR AU - Merle, Frank AU - Raphaël, Pierre AU - Rodnianski, Igor TI - Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map JO - Comptes Rendus. Mathématique PY - 2011 SP - 279 EP - 283 VL - 349 IS - 5-6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.01.026/ DO - 10.1016/j.crma.2011.01.026 LA - en ID - CRMATH_2011__349_5-6_279_0 ER -
%0 Journal Article %A Merle, Frank %A Raphaël, Pierre %A Rodnianski, Igor %T Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map %J Comptes Rendus. Mathématique %D 2011 %P 279-283 %V 349 %N 5-6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.01.026/ %R 10.1016/j.crma.2011.01.026 %G en %F CRMATH_2011__349_5-6_279_0
Merle, Frank; Raphaël, Pierre; Rodnianski, Igor. Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 279-283. doi : 10.1016/j.crma.2011.01.026. https://www.numdam.org/articles/10.1016/j.crma.2011.01.026/
[1] Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions | arXiv
[2] I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Global Schrödinger maps, Annals of Math., in press.
[3] Formal asymptotics of bubbling in the harmonic map heat flow, SIAM J. Appl. Math., Volume 63 (2003), pp. 1682-1717
[4] Schrödinger maps, Comm. Pure Appl. Math., Volume 53 (2000) no. 5
[5] Geometric evolution equations in critical dimensions, Calc. Var. Partial Differential Equations, Volume 30 (2007) no. 4, pp. 499-512
[6] Schrödinger flow near harmonic maps, Comm. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 463-499
[7] Asymptotic stability of harmonic maps under the Schrödinger flow, Duke Math. J., Volume 145 (2008) no. 3, pp. 537-583
[8] Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on
[9] Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math., Volume 171 (2008) no. 3, pp. 543-615
[10] Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal., Volume 13 (2003), pp. 591-642
[11] On universality of blow up profile for
[12] Profiles and quantization of the blow up mass for critical non linear Schrödinger equation, Comm. Math. Phys., Volume 253 (2004) no. 3, pp. 675-704
[13] Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Annals of Math., Volume 161 (2005) no. 1, pp. 157-222
[14] Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc., Volume 19 (2006) no. 1, pp. 37-90
[15] F. Merle, P. Raphaël, I. Rodnianski, Blow up for the energy critical corotational Schrödinger map, preprint 2011.
[16] On singularities of the heat flow for harmonic maps from surfaces into spheres, Comm. Anal. Geom., Volume 3 (1995), pp. 297-315
[17] Bubbling of the heat flows for harmonic maps from surface, Comm. Pure Appl. Math., Volume 50 (1997), pp. 295-310
[18] Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann., Volume 331 (2005), pp. 577-609
[19] P. Raphaël, I. Rodnianski, Stable blow up dynamics for the critical corotational Wave map and equivariant Yang–Mills problems, Publi. I.H.E.S., in press.
[20] Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., Volume 24 (2011), pp. 471-546
[21] On the evolution of harmonic mappings of Riemannian surfaces, Comm. Math. Helv., Volume 60 (1985), pp. 558-581
[22] Winding behaviour of finite-time singularities of the harmonic map heat flow, Math. Z., Volume 247 (2004)
Cité par Sources :