Nous considérons lʼapplication de Schrödinger sur la 2-sphère énergie critique pour des données initiales à symétrie équivariante et de degré . Nous exhibons un ensemble de données initiales régulières arbitrairement proches dans la topologie invariante dʼéchelle de lʼapplication harmonique dʼénergie minimale qui engendrent des solutions explosives en temps fini. Nous donnons une description fine de la formation de singularité qui correspond à la concentration dʼune bulle universelle dʼénergie
We consider the energy critical Schrödinger map to the 2-sphere for equivariant initial data of homotopy number . We show the existence of a set of smooth initial data arbitrarily close to the ground state harmonic map in the scale invariant norm which generate finite time blow up solutions. We give in addition a sharp description of the corresponding singularity formation which occurs by concentration of a universal bubble of energy
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_279_0, author = {Merle, Frank and Rapha\"el, Pierre and Rodnianski, Igor}, title = {Blow up dynamics for smooth equivariant solutions to the energy critical {Schr\"odinger} map}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--283}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.026}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.026/} }
TY - JOUR AU - Merle, Frank AU - Raphaël, Pierre AU - Rodnianski, Igor TI - Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map JO - Comptes Rendus. Mathématique PY - 2011 SP - 279 EP - 283 VL - 349 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.026/ DO - 10.1016/j.crma.2011.01.026 LA - en ID - CRMATH_2011__349_5-6_279_0 ER -
%0 Journal Article %A Merle, Frank %A Raphaël, Pierre %A Rodnianski, Igor %T Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map %J Comptes Rendus. Mathématique %D 2011 %P 279-283 %V 349 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.01.026/ %R 10.1016/j.crma.2011.01.026 %G en %F CRMATH_2011__349_5-6_279_0
Merle, Frank; Raphaël, Pierre; Rodnianski, Igor. Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 279-283. doi : 10.1016/j.crma.2011.01.026. http://www.numdam.org/articles/10.1016/j.crma.2011.01.026/
[1] Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions | arXiv
[2] I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Global Schrödinger maps, Annals of Math., in press.
[3] Formal asymptotics of bubbling in the harmonic map heat flow, SIAM J. Appl. Math., Volume 63 (2003), pp. 1682-1717
[4] Schrödinger maps, Comm. Pure Appl. Math., Volume 53 (2000) no. 5
[5] Geometric evolution equations in critical dimensions, Calc. Var. Partial Differential Equations, Volume 30 (2007) no. 4, pp. 499-512
[6] Schrödinger flow near harmonic maps, Comm. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 463-499
[7] Asymptotic stability of harmonic maps under the Schrödinger flow, Duke Math. J., Volume 145 (2008) no. 3, pp. 537-583
[8] Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on , Comm. Math. Phys., Volume 300 (2010) no. 1, pp. 205-242
[9] Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math., Volume 171 (2008) no. 3, pp. 543-615
[10] Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal., Volume 13 (2003), pp. 591-642
[11] On universality of blow up profile for critical nonlinear Schrödinger equation, Invent. Math., Volume 156 (2004), pp. 565-672
[12] Profiles and quantization of the blow up mass for critical non linear Schrödinger equation, Comm. Math. Phys., Volume 253 (2004) no. 3, pp. 675-704
[13] Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Annals of Math., Volume 161 (2005) no. 1, pp. 157-222
[14] Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc., Volume 19 (2006) no. 1, pp. 37-90
[15] F. Merle, P. Raphaël, I. Rodnianski, Blow up for the energy critical corotational Schrödinger map, preprint 2011.
[16] On singularities of the heat flow for harmonic maps from surfaces into spheres, Comm. Anal. Geom., Volume 3 (1995), pp. 297-315
[17] Bubbling of the heat flows for harmonic maps from surface, Comm. Pure Appl. Math., Volume 50 (1997), pp. 295-310
[18] Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann., Volume 331 (2005), pp. 577-609
[19] P. Raphaël, I. Rodnianski, Stable blow up dynamics for the critical corotational Wave map and equivariant Yang–Mills problems, Publi. I.H.E.S., in press.
[20] Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., Volume 24 (2011), pp. 471-546
[21] On the evolution of harmonic mappings of Riemannian surfaces, Comm. Math. Helv., Volume 60 (1985), pp. 558-581
[22] Winding behaviour of finite-time singularities of the harmonic map heat flow, Math. Z., Volume 247 (2004)
Cité par Sources :